Emergency Response Inference Mapping (ERIMap): A Bayesian network-based method for dynamic observation processing
- URL: http://arxiv.org/abs/2403.06716v2
- Date: Tue, 11 Mar 2025 14:23:44 GMT
- Title: Emergency Response Inference Mapping (ERIMap): A Bayesian network-based method for dynamic observation processing
- Authors: Moritz Schneider, Lukas Halekotte, Tina Comes, Daniel Lichte, Frank Fiedrich,
- Abstract summary: In emergencies, high stake decisions often have to be made under time pressure and strain.<n>Currently, there is a lack of systematic approaches for information processing and situation assessment.<n>We present a Bayesian network-based method called ERIMap that is tailored to the complex information-scape during emergencies.
- Score: 1.0998375857698495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In emergencies, high stake decisions often have to be made under time pressure and strain. In order to support such decisions, information from various sources needs to be collected and processed rapidly. The information available tends to be temporally and spatially variable, uncertain, and sometimes conflicting, leading to potential biases in decisions. Currently, there is a lack of systematic approaches for information processing and situation assessment which meet the particular demands of emergency situations. To address this gap, we present a Bayesian network-based method called ERIMap that is tailored to the complex information-scape during emergencies. The method enables the systematic and rapid processing of heterogeneous and potentially uncertain observations and draws inferences about key variables of an emergency. It thereby reduces complexity and cognitive load for decision makers. The output of the ERIMap method is a dynamically evolving and spatially resolved map of beliefs about key variables of an emergency that is updated each time a new observation becomes available. The method is illustrated in a case study in which an emergency response is triggered by an accident causing a gas leakage on a chemical plant site.
Related papers
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Multi-Agent Reinforcement Learning with Hierarchical Coordination for Emergency Responder Stationing [8.293120269016834]
An emergency responder management (ERM) system dispatches responders when it receives requests for medical aid.
ERM systems can proactively reposition responders between predesignated waiting locations to cover any gaps.
The state-of-the-art approach in proactive repositioning is a hierarchical approach based on spatial decomposition and online Monte Carlo tree search.
We introduce a novel reinforcement learning (RL) approach, based on the same hierarchical decomposition, but replacing online search with learning.
arXiv Detail & Related papers (2024-05-21T21:15:45Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - Change Detection for Local Explainability in Evolving Data Streams [72.4816340552763]
Local feature attribution methods have become a popular technique for post-hoc and model-agnostic explanations.
It is often unclear how local attributions behave in realistic, constantly evolving settings such as streaming and online applications.
We present CDLEEDS, a flexible and model-agnostic framework for detecting local change and concept drift.
arXiv Detail & Related papers (2022-09-06T18:38:34Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
We study off-policy evaluation and learning from sequential data.
We formalize the relevant causal structure of problems such as dynamic personalized pricing.
We show improved out-of-sample policy performance in this class of relevant problems.
arXiv Detail & Related papers (2021-10-19T16:15:56Z) - Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction [17.94199362114272]
In intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation.
We propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence.
We conduct extensive experiments on large-scale real-world tasks and verify the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-05-21T17:43:07Z) - Learning Dependencies in Distributed Cloud Applications to Identify and
Localize Anomalies [58.88325379746632]
We present Arvalus and its variant D-Arvalus, a neural graph transformation method that models system components as nodes and their dependencies as edges to improve the identification and localization of anomalies.
Given a series of metric, our method predicts the most likely system state - either normal or an anomaly class - and performs localization when an anomaly is detected.
The evaluation shows the generally good prediction performance of Arvalus and reveals the advantage of D-Arvalus which incorporates information about system component dependencies.
arXiv Detail & Related papers (2021-03-09T06:34:05Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
We are working towards a multipronged emergency response tool that provide stakeholders timely access to comprehensive, relevant, and reliable information.
Our tool consists of encoding multiple layers of open source geospatial data including flood risk location, road network strength, inundation maps that proxy inland flooding and computer vision semantic segmentation for estimating flooded areas and damaged infrastructure.
These data layers are combined and used as input data for machine learning algorithms such as finding the best evacuation routes before, during and after an emergency or providing a list of available lodging for first responders in an impacted area for first.
arXiv Detail & Related papers (2020-05-28T18:05:08Z) - On Algorithmic Decision Procedures in Emergency Response Systems in
Smart and Connected Communities [21.22596396400625]
Emergency Response Management (ERM) is a critical problem faced by communities across the globe.
We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents.
We propose two partially decentralized multi-agent planning algorithms that utilizes and exploit the structure of the dispatch problem.
arXiv Detail & Related papers (2020-01-21T07:04:38Z) - Root Cause Detection Among Anomalous Time Series Using Temporal State
Alignment [0.0]
We propose a method that isolates the root cause of an anomaly by analyzing the patterns in time series fluctuations.
The idea is to track the propagation of the effect when a problem causes unaligned but homogeneous shifts of the underlying states.
We evaluate our approach by finding the root cause of anomalies in Zillows clickstream data by identifying causal patterns among a set of observed fluctuations.
arXiv Detail & Related papers (2020-01-04T08:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.