論文の概要: Generalising Multi-Agent Cooperation through Task-Agnostic Communication
- arxiv url: http://arxiv.org/abs/2403.06750v1
- Date: Mon, 11 Mar 2024 14:20:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 18:55:49.101380
- Title: Generalising Multi-Agent Cooperation through Task-Agnostic Communication
- Title(参考訳): タスク非依存コミュニケーションによるマルチエージェント協調の一般化
- Authors: Dulhan Jayalath, Steven Morad, Amanda Prorok
- Abstract要約: 協調型マルチロボット問題におけるMARL(Multi-agent reinforcement learning)の既存のコミュニケーション手法はほとんどタスク固有であり、各タスクごとに新しいコミュニケーション戦略を訓練する。
与えられた環境内の任意のタスクに適用可能な通信戦略を導入することで、この非効率性に対処する。
我々の目的は、可変数のエージェント観測から固定サイズの潜在マルコフ状態を学ぶことである。
本手法は,コミュニケーション戦略を微調整することなく,新しいタスクへのシームレスな適応が可能であり,トレーニング中よりも多くのエージェントへのスケーリングを優雅にサポートし,環境におけるアウト・オブ・ディストリビューションイベントを検出する。
- 参考スコア(独自算出の注目度): 7.380444448047908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing communication methods for multi-agent reinforcement learning (MARL)
in cooperative multi-robot problems are almost exclusively task-specific,
training new communication strategies for each unique task. We address this
inefficiency by introducing a communication strategy applicable to any task
within a given environment. We pre-train the communication strategy without
task-specific reward guidance in a self-supervised manner using a set
autoencoder. Our objective is to learn a fixed-size latent Markov state from a
variable number of agent observations. Under mild assumptions, we prove that
policies using our latent representations are guaranteed to converge, and upper
bound the value error introduced by our Markov state approximation. Our method
enables seamless adaptation to novel tasks without fine-tuning the
communication strategy, gracefully supports scaling to more agents than present
during training, and detects out-of-distribution events in an environment.
Empirical results on diverse MARL scenarios validate the effectiveness of our
approach, surpassing task-specific communication strategies in unseen tasks.
Our implementation of this work is available at
https://github.com/proroklab/task-agnostic-comms.
- Abstract(参考訳): 協調型マルチロボット問題におけるMARL(Multi-agent reinforcement learning)の既存のコミュニケーション手法はほとんどタスク固有であり、各タスクごとに新しいコミュニケーション戦略を訓練する。
与えられた環境内の任意のタスクに適用可能な通信戦略を導入することで、この非効率性に対処する。
我々は,タスク固有の報酬ガイダンスを使わずに,設定されたオートエンコーダを用いてコミュニケーション戦略を事前訓練する。
我々の目的は、可変数のエージェント観測から固定サイズの潜在マルコフ状態を学ぶことである。
軽度の仮定では、潜在表現を用いたポリシーが収束することを保証し、マルコフ状態近似によって導入された値誤差を上限とする。
本手法は,コミュニケーション戦略を微調整することなく,新しいタスクへのシームレスな適応が可能であり,トレーニング中よりも多くのエージェントへのスケーリングを優雅にサポートし,環境における配布外事象を検出する。
多様なMARLシナリオに関する実証的な結果は、未確認タスクにおけるタスク固有のコミュニケーション戦略を超越して、我々のアプローチの有効性を検証する。
この実装はhttps://github.com/proroklab/task-agnostic-commsで利用可能です。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSSは、自己監督型タスク表現学習に基づくコンテキストベースメタ強化学習アルゴリズムである。
MuJoCoとMeta-Worldのベンチマークでは、MoSSはパフォーマンス、サンプル効率(3-50倍高速)、適応効率、一般化の点で先行して性能が向上している。
論文 参考訳(メタデータ) (2023-04-29T15:46:19Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
マルチエージェント強化学習(MARL)におけるハイブリッド実行の導入
MARLは、エージェントが任意の通信レベルを持つ協調タスクを実行時に完了させることを目標とする新しいパラダイムである。
我々は,自動回帰予測モデルを用いたMAROを集中的に訓練し,行方不明者の観察を推定する手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T14:58:32Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
本研究は,訓練作業中の行動伝達子を学習するための,新たな客観的機能を導入する。
理論的には、転送されたポリシーとアクショントランスレータの値が、ソースポリシーの値に近似可能であることを検証する。
本稿では,アクショントランスレータとコンテキストベースメタRLアルゴリズムを組み合わせることで,データ収集の効率化と,メタトレーニング時の効率的な探索を提案する。
論文 参考訳(メタデータ) (2022-07-19T04:58:06Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
そこで本研究では,メタトレーニングタスクの分散化を目的とした,ドメインに依存しないタスク拡張手法Meta-Interpolationを提案する。
様々な領域にまたがる8つのデータセットに対してメタ補間の有効性を実証的に検証した。
論文 参考訳(メタデータ) (2022-05-20T06:53:03Z) - FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems [15.631744703803806]
我々は、エージェントが効果的なマルチホップ通信プロトコルを同時に学習できる強化学習ベースのアプローチであるFCMNetを紹介する。
単純なマルチホップトポロジを用いて、各エージェントに各ステップで他のエージェントが逐次エンコードした情報を受信する能力を与える。
FCMNetは、すべてのStarCraft IIマイクロマネジメントタスクにおいて、最先端のコミュニケーションベースの強化学習方法より優れている。
論文 参考訳(メタデータ) (2022-01-28T09:12:01Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
多くの現実世界の問題は、複数の自律エージェントの調整を必要とする。
最近の研究は、複雑なマルチエージェント協調を可能にする明示的なコミュニケーション戦略を学ぶためのグラフニューラルネットワーク(GNN)の約束を示している。
一つの利己的なエージェントが高度に操作的なコミュニケーション戦略を学習し、協調的なエージェントチームを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-08-06T12:48:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。