論文の概要: Average Calibration Error: A Differentiable Loss for Improved
Reliability in Image Segmentation
- arxiv url: http://arxiv.org/abs/2403.06759v1
- Date: Mon, 11 Mar 2024 14:31:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 18:41:42.846959
- Title: Average Calibration Error: A Differentiable Loss for Improved
Reliability in Image Segmentation
- Title(参考訳): 平均校正誤差:画像セグメンテーションにおける信頼性向上のための微分損失
- Authors: Theodore Barfoot and Luis Garcia-Peraza-Herrera and Ben Glocker and
Tom Vercauteren
- Abstract要約: 本稿では,L1平均キャリブレーション誤差(mL1-ACE)を新たな補助損失関数として用いて,セグメンテーション品質を損なうことなく画素ワイドキャリブレーションを改善することを提案する。
この損失は、ハード・ビンニングを用いても直接微分可能であり、近似的ではあるが微分可能なサロゲートやソフト・ビンニングのアプローチを回避できることが示される。
- 参考スコア(独自算出の注目度): 17.263160921956445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks for medical image segmentation often produce
overconfident results misaligned with empirical observations. Such
miscalibration, challenges their clinical translation. We propose to use
marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss
function to improve pixel-wise calibration without compromising segmentation
quality. We show that this loss, despite using hard binning, is directly
differentiable, bypassing the need for approximate but differentiable surrogate
or soft binning approaches. Our work also introduces the concept of dataset
reliability histograms which generalises standard reliability diagrams for
refined visual assessment of calibration in semantic segmentation aggregated at
the dataset level. Using mL1-ACE, we reduce average and maximum calibration
error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS
2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
- Abstract(参考訳): 医用画像セグメンテーションのためのディープニューラルネットワークは、しばしば経験的観測とミスマッチした自信過剰な結果を生み出す。
このような誤訳は、臨床翻訳に挑戦する。
本稿では,L1平均キャリブレーション誤差(mL1-ACE)を新たな補助損失関数として用いて,セグメンテーション品質を損なうことなく画素ワイドキャリブレーションを改善することを提案する。
この損失は、ハード・ビンニングを用いても直接微分可能であり、近似的ではあるが微分可能なサロゲートやソフト・ビンニングのアプローチを回避できることが示される。
また,データセットレベルで集約された意味セグメンテーションにおけるキャリブレーションの高精度な視覚的評価のための標準信頼性図を一般化した,データセット信頼性ヒストグラムの概念も紹介する。
mL1-ACEを用いて平均校正誤差と最大校正誤差をそれぞれ45%と55%削減し、BraTS 2021データセットのDiceスコアを87%保持する。
コードを以下に公開します。 https://github.com/cai4cai/ACE-DLIRIS
関連論文リスト
- Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
我々は,新たな不確実性認識変換(SAUNA)を導入する。
以上の結果から,SAUNA変換の統合とセグメント化損失は,異なるセグメンテーションモデルにおいて大きな性能向上をもたらすことが示唆された。
論文 参考訳(メタデータ) (2024-05-27T04:17:10Z) - Asymptotic Characterisation of Robust Empirical Risk Minimisation
Performance in the Presence of Outliers [18.455890316339595]
我々は,次元$d$とデータ点数$n$が固定比$alpha=n/d$で分岐した場合,高次元の線形回帰について検討し,出力率を含むデータモデルについて検討する。
我々は、$ell$-regularized $ell$, $ell_$, Huber損失を用いて、経験的リスク最小化(ERM)のパフォーマンスの正確性を提供する。
論文 参考訳(メタデータ) (2023-05-30T12:18:39Z) - DOMINO: Domain-aware Model Calibration in Medical Image Segmentation [51.346121016559024]
現代のディープニューラルネットワークはキャリブレーションが不十分で、信頼性と信頼性を損なう。
本稿では,クラスラベル間のセマンティック・コンフューザビリティと階層的類似性を利用したドメイン認識モデルキャリブレーション手法であるDOMINOを提案する。
その結果,DOMINOを校正したディープニューラルネットワークは,頭部画像分割における非校正モデルや最先端形態計測法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-13T15:31:52Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
ニューラルネットワークの誤りを補うポストホックアプローチは、温度スケーリングを実行することだ。
入力毎に異なる温度値を予測し、信頼度と精度のミスマッチを調整することを提案する。
CIFAR10/100およびTiny-ImageNetデータセットを用いて,ResNet50およびWideResNet28-10アーキテクチャ上で本手法をテストする。
論文 参考訳(メタデータ) (2022-07-13T14:13:49Z) - Adaptation to CT Reconstruction Kernels by Enforcing Cross-domain
Feature Maps Consistency [0.06117371161379209]
本研究は,スムーズで訓練し,鋭い再構築カーネル上で試験したモデルにおいて,新型コロナウイルスのセグメンテーション品質の低下を示すものである。
本稿では,F-Consistency(F-Consistency)と呼ばれる,教師なし適応手法を提案する。
論文 参考訳(メタデータ) (2022-03-28T10:00:03Z) - A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved
Neural Network Calibration [12.449806152650657]
信頼性と精度の多クラス差(MDCA)という,新たな補助的損失関数を提案する。
MDCAを用いたトレーニングは,画像分類やセグメンテーションタスクにおける予測誤差(ECE)と静的誤差(SCE)の観点から,より良い校正モデルをもたらすことを示す。
論文 参考訳(メタデータ) (2022-03-25T18:02:13Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
完全大域キャリブレーションと完全個別化キャリブレーションのギャップにまたがる細粒度キャリブレーション指標を提案する。
次に,局所再校正法であるLoReを導入し,既存の校正法よりもLCEを改善する。
論文 参考訳(メタデータ) (2021-02-22T07:22:12Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
我々は,Mix-n-Matchキャリブレーション戦略が,データ効率と表現力を大幅に向上することを示す。
標準評価プラクティスの潜在的な問題も明らかにします。
我々の手法はキャリブレーションと評価タスクの両方において最先端のソリューションより優れている。
論文 参考訳(メタデータ) (2020-03-16T17:00:35Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。