MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology
- URL: http://arxiv.org/abs/2403.06800v1
- Date: Mon, 11 Mar 2024 15:17:25 GMT
- Title: MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology
- Authors: Shu Yang, Yihui Wang, Hao Chen
- Abstract summary: Multiple Instance Learning (MIL) has emerged as a dominant paradigm to extract discriminative feature representations within Whole Slide Images (WSIs) in computational pathology.
In this paper, we incorporate the Selective Scan Space State Sequential Model (Mamba) in Multiple Instance Learning (MIL) for long sequence modeling with linear complexity.
Our proposed framework performs favorably against state-of-the-art MIL methods.
- Score: 10.933433327636918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Instance Learning (MIL) has emerged as a dominant paradigm to
extract discriminative feature representations within Whole Slide Images (WSIs)
in computational pathology. Despite driving notable progress, existing MIL
approaches suffer from limitations in facilitating comprehensive and efficient
interactions among instances, as well as challenges related to time-consuming
computations and overfitting. In this paper, we incorporate the Selective Scan
Space State Sequential Model (Mamba) in Multiple Instance Learning (MIL) for
long sequence modeling with linear complexity, termed as MambaMIL. By
inheriting the capability of vanilla Mamba, MambaMIL demonstrates the ability
to comprehensively understand and perceive long sequences of instances.
Furthermore, we propose the Sequence Reordering Mamba (SR-Mamba) aware of the
order and distribution of instances, which exploits the inherent valuable
information embedded within the long sequences. With the SR-Mamba as the core
component, MambaMIL can effectively capture more discriminative features and
mitigate the challenges associated with overfitting and high computational
overhead. Extensive experiments on two public challenging tasks across nine
diverse datasets demonstrate that our proposed framework performs favorably
against state-of-the-art MIL methods. The code is released at
https://github.com/isyangshu/MambaMIL.
Related papers
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - MLLA-UNet: Mamba-like Linear Attention in an Efficient U-Shape Model for Medical Image Segmentation [6.578088710294546]
Traditional segmentation methods struggle to address challenges such as high anatomical variability, blurred tissue boundaries, low organ contrast, and noise.
We propose MLLA-UNet (Mamba-Like Linear Attention UNet), a novel architecture that achieves linear computational complexity while maintaining high segmentation accuracy.
Experiments demonstrate that MLLA-UNet achieves state-of-the-art performance on six challenging datasets with 24 different segmentation tasks, including but not limited to FLARE22, AMOS CT, and ACDC, with an average DSC of 88.32%.
arXiv Detail & Related papers (2024-10-31T08:54:23Z) - HRVMamba: High-Resolution Visual State Space Model for Dense Prediction [60.80423207808076]
State Space Models (SSMs) with efficient hardware-aware designs have demonstrated significant potential in computer vision tasks.
These models have been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation.
We introduce the Dynamic Visual State Space (DVSS) block, which employs deformable convolution to mitigate the long-range forgetting problem.
We also introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process.
arXiv Detail & Related papers (2024-10-04T06:19:29Z) - Mamba2MIL: State Space Duality Based Multiple Instance Learning for Computational Pathology [17.329498427735565]
We propose a novel Multiple Instance Learning framework called Mamba2MIL.
Mamba2MIL exploits order-related and order-independent features, resulting in suboptimal utilization of sequence information.
We conduct extensive experiments across multiple datasets, achieving improvements in nearly all performance metrics.
arXiv Detail & Related papers (2024-08-27T13:01:19Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaMIM: Pre-training Mamba with State Space Token-interpolation [14.343466340528687]
We introduce a generative self-supervised learning method for Mamba (MambaMIM) based on Selective Structure State Space Sequence Token-interpolation (S6T)
MambaMIM can be used on any single or hybrid Mamba architectures to enhance the Mamba long-range representation capability.
arXiv Detail & Related papers (2024-08-15T10:35:26Z) - FMamba: Mamba based on Fast-attention for Multivariate Time-series Forecasting [6.152779144421304]
We introduce a novel framework named FMamba for multivariate time-series forecasting (MTSF)
Technically, we first extract the temporal features of the input variables through an embedding layer, then compute the dependencies among input variables via the fast-attention module.
We use Mamba to selectively deal with the input features and further extract the temporal dependencies of the variables through the multi-layer perceptron block (MLP-block)
Finally, FMamba obtains the predictive results through the projector, a linear layer.
arXiv Detail & Related papers (2024-07-20T09:14:05Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.