MambaMIM: Pre-training Mamba with State Space Token-interpolation
- URL: http://arxiv.org/abs/2408.08070v1
- Date: Thu, 15 Aug 2024 10:35:26 GMT
- Title: MambaMIM: Pre-training Mamba with State Space Token-interpolation
- Authors: Fenghe Tang, Bingkun Nian, Yingtai Li, Jie Yang, Liu Wei, S. Kevin Zhou,
- Abstract summary: We introduce a generative self-supervised learning method for Mamba (MambaMIM) based on Selective Structure State Space Sequence Token-interpolation (S6T)
MambaMIM can be used on any single or hybrid Mamba architectures to enhance the Mamba long-range representation capability.
- Score: 14.343466340528687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative self-supervised learning demonstrates outstanding representation learning capabilities in both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). However, there are currently no generative pre-training methods related to selective state space models (Mamba) that can handle long-range dependencies effectively. To address this challenge, we introduce a generative self-supervised learning method for Mamba (MambaMIM) based on Selective Structure State Space Sequence Token-interpolation (S6T), a general-purpose pre-training method for arbitrary Mamba architectures. Our method, MambaMIM, incorporates a bottom-up 3D hybrid masking strategy in the encoder to maintain masking consistency across different architectures. Additionally, S6T is employed to learn causal relationships between the masked sequence in the state space. MambaMIM can be used on any single or hybrid Mamba architectures to enhance the Mamba long-range representation capability. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for pre-training medical image tasks. The code is available at: https://github.com/FengheTan9/MambaMIM
Related papers
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - MAP: Unleashing Hybrid Mamba-Transformer Vision Backbone's Potential with Masked Autoregressive Pretraining [23.37555991996508]
We propose Masked Autoregressive Pretraining (MAP) to pretrain a hybrid Mamba-Transformer vision backbone network.
We show that both the pure Mamba architecture and the hybrid Mamba-Transformer vision backbone network pretrained with MAP significantly outperform other pretraining strategies.
arXiv Detail & Related papers (2024-10-01T17:05:08Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - MambaOut: Do We Really Need Mamba for Vision? [70.60495392198686]
Mamba, an architecture with RNN-like token mixer of state space model (SSM), was recently introduced to address the quadratic complexity of the attention mechanism.
This paper conceptually concludes that Mamba is ideally suited for tasks with long-sequence and autoregressive characteristics.
We construct a series of models named MambaOut through stacking Mamba blocks while removing their core token mixer, SSM.
arXiv Detail & Related papers (2024-05-13T17:59:56Z) - Vision Mamba: A Comprehensive Survey and Taxonomy [11.025533218561284]
State Space Model (SSM) is a mathematical model used to describe and analyze the behavior of dynamic systems.
Based on the latest state-space models, Mamba merges time-varying parameters into SSMs and formulates a hardware-aware algorithm for efficient training and inference.
Mamba is expected to become a new AI architecture that may outperform Transformer.
arXiv Detail & Related papers (2024-05-07T15:30:14Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
Mamba, a recent selective structured state space model, excels in long sequence modeling.
Since January 2024, Mamba has been actively applied to diverse computer vision tasks.
This paper reviews visual Mamba approaches, analyzing over 200 papers.
arXiv Detail & Related papers (2024-04-29T16:51:30Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamber is a novel RIS architecture that integrates the power of Mamba with a multi-modal Mamba Twister block.
The Mamba Twister explicitly models image-text interaction, and fuses textual and visual features through its unique channel and spatial twisting mechanism.
arXiv Detail & Related papers (2024-03-26T16:27:37Z) - MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology [10.933433327636918]
Multiple Instance Learning (MIL) has emerged as a dominant paradigm to extract discriminative feature representations within Whole Slide Images (WSIs) in computational pathology.
In this paper, we incorporate the Selective Scan Space State Sequential Model (Mamba) in Multiple Instance Learning (MIL) for long sequence modeling with linear complexity.
Our proposed framework performs favorably against state-of-the-art MIL methods.
arXiv Detail & Related papers (2024-03-11T15:17:25Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.