Last Iterate Convergence of Incremental Methods and Applications in Continual Learning
- URL: http://arxiv.org/abs/2403.06873v2
- Date: Fri, 28 Jun 2024 02:25:20 GMT
- Title: Last Iterate Convergence of Incremental Methods and Applications in Continual Learning
- Authors: Xufeng Cai, Jelena Diakonikolas,
- Abstract summary: Motivated by applications in continual learning, we obtain convergence guarantees for the last iterate of both incremental gradient and incremental proximal methods.
We study incremental proximal methods as a model of continual learning with generalization and argue that large amount of regularization is crucial to preventing catastrophic forgetting.
- Score: 10.811735264028348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incremental gradient and incremental proximal methods are a fundamental class of optimization algorithms used for solving finite sum problems, broadly studied in the literature. Yet, without strong convexity, their convergence guarantees have primarily been established for the ergodic (average) iterate. Motivated by applications in continual learning, we obtain the first convergence guarantees for the last iterate of both incremental gradient and incremental proximal methods, in general convex smooth (for both) and convex Lipschitz (for the proximal variants) settings. Our oracle complexity bounds for the last iterate nearly match (i.e., match up to a square-root-log or a log factor) the best known oracle complexity bounds for the average iterate, for both classes of methods. We further obtain generalizations of our results to weighted averaging of the iterates with increasing weights and for randomly permuted ordering of updates. We study incremental proximal methods as a model of continual learning with generalization and argue that large amount of regularization is crucial to preventing catastrophic forgetting. Our results generalize last iterate guarantees for incremental methods compared to state of the art, as such results were previously known only for overparameterized linear models, which correspond to convex quadratic problems with infinitely many solutions.
Related papers
- On the Last-Iterate Convergence of Shuffling Gradient Methods [21.865728815935665]
We prove the first last-iterate convergence rates for shuffling gradient methods with respect to the objective value.
Our results either (nearly) match the existing last-iterate lower bounds or are as fast as the previous best upper bounds for the average iterate.
arXiv Detail & Related papers (2024-03-12T15:01:17Z) - Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization [21.022322975077653]
Methods for solving continuous optimization problems with equality constraints have attracted attention recently.
convergence guarantees have been limited to the expected value of a gradient to measure zero.
New almost-sure convergence guarantees for the primals, Lagrange measures and station measures generated by a SQP algorithm are proved.
arXiv Detail & Related papers (2023-08-07T16:03:40Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Robust empirical risk minimization via Newton's method [9.797319790710711]
A new variant of Newton's method for empirical risk minimization is studied.
The gradient and Hessian of the objective function are replaced by robust estimators.
An algorithm for obtaining robust Newton directions based on the conjugate gradient method is also proposed.
arXiv Detail & Related papers (2023-01-30T18:54:54Z) - Sharp global convergence guarantees for iterative nonconvex
optimization: A Gaussian process perspective [30.524043513721168]
We develop a general recipe for analyzing the convergence of iterative algorithms for a class of regression models.
deterministicly, we accurately capture both the convergence rate of the algorithm and the eventual error floor in the finite-sample regime.
We show sharp convergence rates for both higher-order algorithms based on alternating updates and first-order algorithms based on subgradient subgradients.
arXiv Detail & Related papers (2021-09-20T21:48:19Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.