Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization
- URL: http://arxiv.org/abs/2308.03687v1
- Date: Mon, 7 Aug 2023 16:03:40 GMT
- Title: Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization
- Authors: Frank E. Curtis, Xin Jiang, and Qi Wang
- Abstract summary: Methods for solving continuous optimization problems with equality constraints have attracted attention recently.
convergence guarantees have been limited to the expected value of a gradient to measure zero.
New almost-sure convergence guarantees for the primals, Lagrange measures and station measures generated by a SQP algorithm are proved.
- Score: 21.022322975077653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic sequential quadratic optimization (SQP) methods for solving
continuous optimization problems with nonlinear equality constraints have
attracted attention recently, such as for solving large-scale data-fitting
problems subject to nonconvex constraints. However, for a recently proposed
subclass of such methods that is built on the popular stochastic-gradient
methodology from the unconstrained setting, convergence guarantees have been
limited to the asymptotic convergence of the expected value of a stationarity
measure to zero. This is in contrast to the unconstrained setting in which
almost-sure convergence guarantees (of the gradient of the objective to zero)
can be proved for stochastic-gradient-based methods. In this paper, new
almost-sure convergence guarantees for the primal iterates, Lagrange
multipliers, and stationarity measures generated by a stochastic SQP algorithm
in this subclass of methods are proved. It is shown that the error in the
Lagrange multipliers can be bounded by the distance of the primal iterate to a
primal stationary point plus the error in the latest stochastic gradient
estimate. It is further shown that, subject to certain assumptions, this latter
error can be made to vanish by employing a running average of the Lagrange
multipliers that are computed during the run of the algorithm. The results of
numerical experiments are provided to demonstrate the proved theoretical
guarantees.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Low-Rank Tensor Completion via Novel Sparsity-Inducing Regularizers [30.920908325825668]
To alleviate l1-norm in the low-rank tensor completion problem, non-rank surrogates/regularizers have been suggested.
These regularizers are applied to nuclear-rank restoration, and efficient algorithms based on the method of multipliers are proposed.
arXiv Detail & Related papers (2023-10-10T01:00:13Z) - A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems [12.29270365918848]
The proposed algorithm is based on the subject-point unique constraints from other interior-point methods.
It is shown that with a careful balance between the projection, step-size and sequence sequences, the proposed algorithm convergence guarantees in both numerical and deterministic settings.
arXiv Detail & Related papers (2023-04-28T15:30:43Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization [2.3814052021083354]
It is assumed that constraint function values and derivatives are available, but only programming approximations of the objective function and its associated derivatives can be computed.
A high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived.
arXiv Detail & Related papers (2023-01-01T21:46:50Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.