論文の概要: Towards Incident Response Orchestration and Automation for the Advanced Metering Infrastructure
- arxiv url: http://arxiv.org/abs/2403.06907v1
- Date: Mon, 11 Mar 2024 16:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-17 13:37:51.378134
- Title: Towards Incident Response Orchestration and Automation for the Advanced Metering Infrastructure
- Title(参考訳): 高度な計測インフラのためのインシデント対応オーケストレーションと自動化に向けて
- Authors: Alexios Lekidis, Vasileios Mavroeidis, Konstantinos Fysarakis,
- Abstract要約: 工業インフラの脅威の状況は、ここ数年で指数関数的に拡大してきた。
このようなインフラストラクチャには、リアルタイムの可用性を必要とするスマートメーターデータ交換のようなサービスが含まれる。
提案手法は、最も顕著なサイバー攻撃をエミュレートしたAdvanced Metering Infrastructureテストベッドを通じて検証される。
- 参考スコア(独自算出の注目度): 0.4751886527142778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The threat landscape of industrial infrastructures has expanded exponentially over the last few years. Such infrastructures include services such as the smart meter data exchange that should have real-time availability. Smart meters constitute the main component of the Advanced Metering Infrastructure, and their measurements are also used as historical data for forecasting the energy demand to avoid load peaks that could lead to blackouts within specific areas. Hence, a comprehensive Incident Response plan must be in place to ensure high service availability in case of cyber-attacks or operational errors. Currently, utility operators execute such plans mostly manually, requiring extensive time, effort, and domain expertise, and they are prone to human errors. In this paper, we present a method to provide an orchestrated and highly automated Incident Response plan targeting specific use cases and attack scenarios in the energy sector, including steps for preparedness, detection and analysis, containment, eradication, recovery, and post-incident activity through the use of playbooks. In particular, we use the OASIS Collaborative Automated Course of Action Operations (CACAO) standard to define highly automatable workflows in support of cyber security operations for the Advanced Metering Infrastructure. The proposed method is validated through an Advanced Metering Infrastructure testbed where the most prominent cyber-attacks are emulated, and playbooks are instantiated to ensure rapid response for the containment and eradication of the threat, business continuity on the smart meter data exchange service, and compliance with incident reporting requirements.
- Abstract(参考訳): 工業インフラの脅威の状況は、ここ数年で指数関数的に拡大してきた。
このようなインフラストラクチャには、リアルタイムの可用性を必要とするスマートメーターデータ交換のようなサービスが含まれる。
スマートメーターはAdvanced Metering Infrastructure(Advanced Metering Infrastructure)の主要なコンポーネントであり、その測定は、特定の領域におけるブラックアウトにつながる負荷ピークを避けるために、エネルギー需要を予測する歴史的なデータとしても使用される。
したがって、サイバー攻撃や運用上のエラーが発生した場合、高可用性を確保するため、総合的なインシデント対応計画が実施されなければならない。
現在、ユーティリティーオペレーターは、主に手動で、広範囲の時間、労力、ドメインの専門知識を必要とする。
本稿では,エネルギーセクターにおける特定のユースケースや攻撃シナリオを対象とした,組織的で高度に自動化されたインシデント対応計画を提案する。
特に、我々は、高度計測インフラのためのサイバーセキュリティ操作をサポートするために、高度に自動化可能なワークフローを定義するために、OASISコラボレーション自動化行動操作コース(CACAO)標準を使用します。
提案手法は、最も顕著なサイバー攻撃をエミュレートしたAdvanced Metering Infrastructureテストベッドを通じて検証され、脅威の封じ込めと根絶、スマートメーターデータ交換サービスにおけるビジネス継続性、インシデントレポート要求に対する迅速な対応を確保するために、プレイブックがインスタンス化される。
関連論文リスト
- Sustainable and Intelligent Public Facility Failure Management System Based on Large Language Models [14.776153063614244]
本稿では,新たなLarge Language Model (LLM)ベースのスマートデバイス管理フレームワークを提案する。
公共施設の予算制約を大幅に減らすための実用性と能力を示す。
フレームワークの範囲を拡大して、より広範な公共施設を含めるとともに、最先端のサイバーセキュリティ技術と統合する予定です。
論文 参考訳(メタデータ) (2025-01-08T02:30:37Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
電力グリッドのインフラと通信のダイナミクスを再現するシミュレーション環境を導入する。
このフレームワークは多様なリアルな攻撃データを生成し、サイバー脅威を検出し緩和するための機械学習アルゴリズムを訓練する。
また、高度な意思決定支援システムを含む、新興のセキュリティ技術を評価するための、制御された柔軟なプラットフォームも提供する。
論文 参考訳(メタデータ) (2024-12-09T07:07:17Z) - VMGuard: Reputation-Based Incentive Mechanism for Poisoning Attack Detection in Vehicular Metaverse [52.57251742991769]
車両メタバースガード(VMGuard)は、車両メタバースシステムをデータ中毒攻撃から保護する。
VMGuardは、参加するSIoTデバイスの信頼性を評価するために、評判に基づくインセンティブメカニズムを実装している。
当社のシステムは,従来は誤分類されていた信頼性の高いSIoTデバイスが,今後の市場ラウンドへの参加を禁止していないことを保証します。
論文 参考訳(メタデータ) (2024-12-05T17:08:20Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
スマートグリッドへの移行により、高度なサイバー脅威に対する電力システムの脆弱性が増大した。
本稿では,モジュール型サイバーアタックの実行に自律エージェントを用いたシミュレーションフレームワークを提案する。
当社のアプローチは、データ生成のための柔軟で汎用的なソースを提供し、より高速なプロトタイピングと開発リソースと時間の削減を支援します。
論文 参考訳(メタデータ) (2024-12-05T08:56:38Z) - IRSKG: Unified Intrusion Response System Knowledge Graph Ontology for Cyber Defense [2.17870369215002]
侵入応答システム(IRS)は、検出後の脅威を軽減するために重要である。
IRSはいくつかの戦術、技術、手順(TTP)を使用して攻撃を軽減し、インフラを通常の運用に復元する。
我々は,新たなエンタープライズシステムの導入を合理化するIRS知識グラフオントロジー(IRSKG)を提案する。
論文 参考訳(メタデータ) (2024-11-23T23:31:55Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
本稿では,車内機能安全とサイバーセキュリティをモデル化・解析するためのSOME/IP通信トラフィックベースアプローチであるSISSAを提案する。
具体的には、SISSAはWeibullディストリビューションでハードウェア障害をモデル化し、SOME/IP通信に対する5つの潜在的な攻撃に対処する。
広範囲な実験結果から,SISSAの有効性と有効性が確認された。
論文 参考訳(メタデータ) (2024-02-21T03:31:40Z) - Guarding the Grid: Enhancing Resilience in Automated Residential Demand Response Against False Data Injection Attacks [2.981139602986498]
ユーティリティ企業は、需要対応プログラムの有効性を高めるために、住宅需要の柔軟性とスマート/IoTデバイスの普及を活用している。
これらのシステムにおける分散アーキテクチャの採用は、それらを偽データインジェクション攻撃(FDIA)のリスクにさらしている。
本稿では、DR最適化、異常検出、攻撃の影響を緩和し、レジリエントで自動化されたデバイススケジューリングシステムを構築するための戦略を組み合わせた総合的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T04:02:52Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
未計画の設備停止のリスクは、収益発生資産の予測保守によって最小化することができる。
機器に基づくセンサネットワークのコンテキストから予測機器のメンテナンスを行うために,モデルフリーのDeep Reinforcement Learningアルゴリズムを提案する。
従来のブラックボックス回帰モデルとは異なり、提案アルゴリズムは最適なメンテナンスポリシーを自己学習し、各機器に対して実行可能なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2020-07-07T10:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。