Bayesian Diffusion Models for 3D Shape Reconstruction
- URL: http://arxiv.org/abs/2403.06973v2
- Date: Mon, 22 Apr 2024 02:13:32 GMT
- Title: Bayesian Diffusion Models for 3D Shape Reconstruction
- Authors: Haiyang Xu, Yu Lei, Zeyuan Chen, Xiang Zhang, Yue Zhao, Yilin Wang, Zhuowen Tu,
- Abstract summary: We present a prediction algorithm that performs effective Bayesian inference by tightly coupling the top-down (prior) information with the bottom-up (data-driven) procedure.
We show the effectiveness of BDM on the 3D shape reconstruction task.
- Score: 54.69889488052155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Bayesian Diffusion Models (BDM), a prediction algorithm that performs effective Bayesian inference by tightly coupling the top-down (prior) information with the bottom-up (data-driven) procedure via joint diffusion processes. We show the effectiveness of BDM on the 3D shape reconstruction task. Compared to prototypical deep learning data-driven approaches trained on paired (supervised) data-labels (e.g. image-point clouds) datasets, our BDM brings in rich prior information from standalone labels (e.g. point clouds) to improve the bottom-up 3D reconstruction. As opposed to the standard Bayesian frameworks where explicit prior and likelihood are required for the inference, BDM performs seamless information fusion via coupled diffusion processes with learned gradient computation networks. The specialty of our BDM lies in its capability to engage the active and effective information exchange and fusion of the top-down and bottom-up processes where each itself is a diffusion process. We demonstrate state-of-the-art results on both synthetic and real-world benchmarks for 3D shape reconstruction.
Related papers
- Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models [33.09663675904689]
We investigate efficient diffusion training from the perspective of dataset pruning.
Inspired by the principles of data-efficient training for generative models such as generative adversarial networks (GANs), we first extend the data selection scheme used in GANs to DM training.
To further improve the generation performance, we employ a class-wise reweighting approach.
arXiv Detail & Related papers (2024-09-27T20:21:19Z) - DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping [20.7584503748821]
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance.
We conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images.
We introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation.
arXiv Detail & Related papers (2024-09-08T14:04:48Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Model-Based Diffusion for Trajectory Optimization [8.943418808959494]
We introduce Model-Based Diffusion (MBD), an optimization approach using the diffusion process to solve trajectory optimization (TO) problems without data.
Although MBD does not require external data, it can be naturally integrated with data of diverse qualities to steer the diffusion process.
MBD outperforms state-of-the-art reinforcement learning and sampling-based TO methods in challenging contact-rich tasks.
arXiv Detail & Related papers (2024-05-28T22:14:25Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
We propose a novel diffusion model reconstruction framework tailored for 3D seismic data.
We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space.
Our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets.
arXiv Detail & Related papers (2024-03-18T05:10:13Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
We introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios.
Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud.
Experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.
arXiv Detail & Related papers (2023-10-26T12:47:26Z) - Distribution-Aligned Diffusion for Human Mesh Recovery [16.64567393672489]
We propose a diffusion-based approach for human mesh recovery.
We propose a Human Mesh Diffusion (HMDiff) framework which frames mesh recovery as a reverse diffusion process.
Our method achieves state-of-the-art performance on three widely used datasets.
arXiv Detail & Related papers (2023-08-25T13:29:31Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
We present Bi-level Neural Volume Fusion (BNV-Fusion), which leverages recent advances in neural implicit representations and neural rendering for dense 3D reconstruction.
In order to incrementally integrate new depth maps into a global neural implicit representation, we propose a novel bi-level fusion strategy.
We evaluate the proposed method on multiple datasets quantitatively and qualitatively, demonstrating a significant improvement over existing methods.
arXiv Detail & Related papers (2022-04-03T19:33:09Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
We propose a Decompose-and-aggregate Network (DaNet) to learn 3D human shape and pose from dense correspondences of body parts.
Messages from local streams are aggregated to enhance the robust prediction of the rotation-based poses.
Our method is validated on both indoor and real-world datasets including Human3.6M, UP3D, COCO, and 3DPW.
arXiv Detail & Related papers (2019-12-31T15:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.