論文の概要: Automatic driving lane change safety prediction model based on LSTM
- arxiv url: http://arxiv.org/abs/2403.06993v1
- Date: Wed, 28 Feb 2024 12:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:10:13.826266
- Title: Automatic driving lane change safety prediction model based on LSTM
- Title(参考訳): LSTMに基づく自動走行車線変更安全予測モデル
- Authors: Wenjian Sun, Linying Pan, Jingyu Xu, Weixiang Wan, Yong Wang,
- Abstract要約: LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点がある。
その結果、従来のモデルベース手法と比較して、LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点があることが示された。
- 参考スコア(独自算出の注目度): 3.8749946206111603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving technology can improve traffic safety and reduce traffic accidents. In addition, it improves traffic flow, reduces congestion, saves energy and increases travel efficiency. In the relatively mature automatic driving technology, the automatic driving function is divided into several modules: perception, decision-making, planning and control, and a reasonable division of labor can improve the stability of the system. Therefore, autonomous vehicles need to have the ability to predict the trajectory of surrounding vehicles in order to make reasonable decision planning and safety measures to improve driving safety. By using deep learning method, a safety-sensitive deep learning model based on short term memory (LSTM) network is proposed. This model can alleviate the shortcomings of current automatic driving trajectory planning, and the output trajectory not only ensures high accuracy but also improves safety. The cell state simulation algorithm simulates the trackability of the trajectory generated by this model. The research results show that compared with the traditional model-based method, the trajectory prediction method based on LSTM network has obvious advantages in predicting the trajectory in the long time domain. The intention recognition module considering interactive information has higher prediction and accuracy, and the algorithm results show that the trajectory is very smooth based on the premise of safe prediction and efficient lane change. And autonomous vehicles can efficiently and safely complete lane changes.
- Abstract(参考訳): 自動運転技術は交通安全を改善し、交通事故を減らすことができる。
さらに、交通の流れを改善し、混雑を減らし、エネルギーを節約し、旅行効率を高める。
比較的成熟した自動運転技術では、自動運転機能は、知覚、意思決定、計画と制御、合理的な分業によってシステムの安定性が向上する、いくつかのモジュールに分けられる。
したがって、自動運転車は、運転安全を改善するための合理的な意思決定と安全対策を行うために、周囲の車両の軌道を予測する能力を持つ必要がある。
深層学習手法を用いて,短期記憶(LSTM)ネットワークに基づく安全性に敏感な深層学習モデルを提案する。
このモデルは、現在の自動走行軌道計画の欠点を軽減することができ、出力軌道は高い精度を保証するだけでなく、安全性も向上する。
セル状態シミュレーションアルゴリズムは、このモデルによって生成された軌道の追跡性をシミュレートする。
その結果、従来のモデルベース手法と比較して、LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点があることが示された。
対話的情報を考慮した意図認識モジュールは, より高い予測精度と精度を有し, 提案アルゴリズムは, 安全な予測と効率的な車線変更の前提に基づいて, 軌道が非常に滑らかであることを示す。
自動運転車は車線変更を効率よく安全に完了させることができる。
関連論文リスト
- A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
本稿では,ラウンドアバウンドにおける安全かつ効率的な運転行動を促進するための学習アルゴリズムを提案する。
提案アルゴリズムは、複雑なマルチサイクルラウンドアバウトにおける安全かつ効率的な運転戦略を学習するために、深層Q-ラーニングネットワークを用いる。
その結果,本システムは安定したトレーニングプロセスを維持しつつ,安全かつ効率的な運転を実現することができた。
論文 参考訳(メタデータ) (2024-08-15T16:10:25Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
軌道予測は、自動運転ソフトウェアスタックの重要なコンポーネントの1つである。
本稿では,自己認識軌道予測手法を提案する。
提案手法は, 自己認識, メモリフットプリント, リアルタイム性能で良好に動作した。
論文 参考訳(メタデータ) (2023-05-16T03:53:23Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
我々は、自動運転車と他の道路エージェントの両方の将来の軌道にまたがる分布について提案する。
推論中は、安全性と予測確率を考慮したコストを最小限に抑える計画軌道を選択する。
都市部の公道上での自動運転車の展開に成功し、快適さを損なうことなく安全に運転できることを確認しました。
論文 参考訳(メタデータ) (2022-11-03T20:16:24Z) - Prediction Based Decision Making for Autonomous Highway Driving [3.6818636539023175]
本稿では,予測に基づく深層強化学習(Deep Reinforcement Learning, PDRL)意思決定モデルを提案する。
高速道路運転の意思決定プロセスにおいて、周囲の車両の操作意図を考慮に入れている。
その結果,提案したPDRLモデルでは,衝突数を減少させることで,Deep Reinforcement Learning (DRL)モデルと比較して意思決定性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-09-05T19:28:30Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection [2.1699196439348265]
提案手法は、高度運転支援システム(ADAS)および自動運転車のアクティブ安全システムの一部として適用されることを約束している。
提案手法の性能評価を行い,本手法が他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:12:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。