Is the effective potential, effective for dynamics?
- URL: http://arxiv.org/abs/2403.07084v2
- Date: Thu, 16 May 2024 11:49:40 GMT
- Title: Is the effective potential, effective for dynamics?
- Authors: Nathan Herring, Shuyang Cao, Daniel Boyanovsky,
- Abstract summary: Energy conservation leads to the emergence of highly excited, entangled stationary states from the dynamical evolution.
The results suggest novel characterization of equilibrium states in terms of order parameter vs. energy density.
- Score: 8.273855626116564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We critically examine the applicability of the effective potential within dynamical situations and find, in short, that the answer is negative. An important caveat of the use of an effective potential in dynamical equations of motion is an explicit violation of energy conservation. An \emph{adiabatic} effective potential is introduced in a consistent quasi-static approximation, and its narrow regime of validity is discussed. Two ubiquitous instances in which even the adiabatic effective potential is not valid in dynamics are studied in detail: parametric amplification in the case of oscillating mean fields, and spinodal instabilities associated with spontaneous symmetry breaking. In both cases profuse particle production is directly linked to the failure of the effective potential to describe the dynamics. We introduce a consistent, renormalized, energy conserving dynamical framework that is amenable to numerical implementation. Energy conservation leads to the emergence of asymptotic highly excited, entangled stationary states from the dynamical evolution. As a corollary, decoherence via dephasing of the density matrix in the adiabatic basis is argued to lead to an emergent entropy, formally equivalent to the entanglement entropy. The results suggest novel characterization of asymptotic equilibrium states in terms of order parameter vs. energy density.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - An optimization-based equilibrium measure describes non-equilibrium steady state dynamics: application to edge of chaos [2.5690340428649328]
Understanding neural dynamics is a central topic in machine learning, non-linear physics and neuroscience.
The dynamics is non-linear, and particularly non-gradient, i.e., the driving force can not be written as gradient of a potential.
arXiv Detail & Related papers (2024-01-18T14:25:32Z) - Floquet engineering of many-body states by the ponderomotive potential [1.2691047660244337]
ponderomotive force is an effective static force that a particle feels in an oscillating field.
We show that the ponderomotive potential from the incident light may be used to induce exciton condensates in semiconductors.
arXiv Detail & Related papers (2023-12-08T08:18:14Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Signatures of a quantum stabilized fluctuating phase and critical
dynamics in a kinetically-constrained open many-body system with two
absorbing states [0.0]
We introduce and investigate an open many-body quantum system in which kinetically coherent and dissipative processes compete.
Our work shows how the interplay between coherent and dissipative processes as well as constraints may lead to a highly intricate non-equilibrium evolution.
arXiv Detail & Related papers (2022-04-22T07:51:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Nonergodic dynamics of the one-dimensional Bose-Hubbard model with a
trapping potential [0.0]
We investigate nonergodic behavior of the one-dimensional Bose-Hubbard model.
We compute the level spacing statistic, the time evolution of the number imbalance between the odd and the even sites, and the entanglement entropy.
arXiv Detail & Related papers (2021-08-03T01:37:42Z) - Wave Function Collapse, Correlating Interactions, and Conservation Laws [0.0]
The assumption that wave function collapse is induced by correlating interactions of the kind that constitute measurements leads to a collapse equation that does not require the introduction of any new physical constants.
The approximate localization of physical systems follows from the distance-dependent nature of the interaction potentials.
arXiv Detail & Related papers (2021-02-22T21:27:54Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.