Adaptive Gain Scheduling using Reinforcement Learning for Quadcopter
Control
- URL: http://arxiv.org/abs/2403.07216v1
- Date: Tue, 12 Mar 2024 00:08:54 GMT
- Title: Adaptive Gain Scheduling using Reinforcement Learning for Quadcopter
Control
- Authors: Mike Timmerman, Aryan Patel, Tim Reinhart
- Abstract summary: The paper presents a technique using reinforcement learning to adapt the control gains of a quadcopter controller.
The primary goal of this controller is to minimize tracking error while following a specified trajectory.
The results show that the adaptive gain scheme achieves over 40$%$ decrease in tracking error as compared to the static gain controller.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The paper presents a technique using reinforcement learning (RL) to adapt the
control gains of a quadcopter controller. Specifically, we employed Proximal
Policy Optimization (PPO) to train a policy which adapts the gains of a
cascaded feedback controller in-flight. The primary goal of this controller is
to minimize tracking error while following a specified trajectory. The paper's
key objective is to analyze the effectiveness of the adaptive gain policy and
compare it to the performance of a static gain control algorithm, where the
Integral Squared Error and Integral Time Squared Error are used as metrics. The
results show that the adaptive gain scheme achieves over 40$\%$ decrease in
tracking error as compared to the static gain controller.
Related papers
- Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
We introduce domain randomization during the training phase of a low-level waypoint guidance controller based on Soft Actor-Critic.
We show that, by introducing a certain degree of uncertainty in quadrotor dynamics during training, we can obtain a controller that is capable to perform the proposed task using a larger variation of quadrotor parameters.
arXiv Detail & Related papers (2022-10-06T14:58:19Z) - Training Efficient Controllers via Analytic Policy Gradient [44.0762454494769]
Control design for robotic systems is complex and often requires solving an optimization to follow a trajectory accurately.
Online optimization approaches like Model Predictive Control (MPC) have been shown to achieve great tracking performance, but require high computing power.
We propose an Analytic Policy Gradient (APG) method to tackle this problem.
arXiv Detail & Related papers (2022-09-26T22:04:35Z) - Performance-Driven Controller Tuning via Derivative-Free Reinforcement
Learning [6.5158195776494]
We tackle the controller tuning problem using a novel derivative-free reinforcement learning framework.
We conduct numerical experiments on two concrete examples from autonomous driving, namely, adaptive cruise control with PID controller and trajectory tracking with MPC controller.
Experimental results show that the proposed method outperforms popular baselines and highlight its strong potential for controller tuning.
arXiv Detail & Related papers (2022-09-11T13:01:14Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem.
We demonstrate improved performance over a robust controller baseline in a numerical example.
arXiv Detail & Related papers (2022-07-28T17:36:37Z) - Actor-Critic based Improper Reinforcement Learning [61.430513757337486]
We consider an improper reinforcement learning setting where a learner is given $M$ base controllers for an unknown Markov decision process.
We propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic scheme and a Natural Actor-Critic scheme.
arXiv Detail & Related papers (2022-07-19T05:55:02Z) - Thompson Sampling Achieves $\tilde O(\sqrt{T})$ Regret in Linear
Quadratic Control [85.22735611954694]
We study the problem of adaptive control of stabilizable linear-quadratic regulators (LQRs) using Thompson Sampling (TS)
We propose an efficient TS algorithm for the adaptive control of LQRs, TSAC, that attains $tilde O(sqrtT)$ regret, even for multidimensional systems.
arXiv Detail & Related papers (2022-06-17T02:47:53Z) - Safe and Efficient Model-free Adaptive Control via Bayesian Optimization [39.962395119933596]
We propose a purely data-driven, model-free approach for adaptive control.
tuning low-level controllers based solely on system data raises concerns on the underlying algorithm safety and computational performance.
We numerically demonstrate for several types of disturbances that our approach is sample efficient, outperforms constrained Bayesian optimization in terms of safety, and achieves the performance optima computed by grid evaluation.
arXiv Detail & Related papers (2021-01-19T19:15:00Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Optimal Trajectory Tracking Control Applied to a Large-Scale
Ball-on-Plate System [0.0]
We propose an ADP-based optimal trajectory tracking controller for a large-scale ball-on-plate system.
Our proposed method incorporates an approximated reference trajectory instead of using setpoint tracking and allows to automatically compensate for constant offset terms.
Our experimental results show that this tracking mechanism significantly reduces the control cost compared to setpoint controllers.
arXiv Detail & Related papers (2020-10-26T11:22:03Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.