論文の概要: Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO
Systems
- arxiv url: http://arxiv.org/abs/2403.07355v2
- Date: Wed, 13 Mar 2024 02:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 10:59:22.664803
- Title: Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO
Systems
- Title(参考訳): 大規模MIMOにおける深層学習に基づくCSIフィードバックのためのベクトル量子化
システム
- Authors: Junyong Shin, Yujin Kang, Yo-Seb Jeon
- Abstract要約: 本稿では,大規模マルチインプットマルチアウトプット(MIMO)システムのための,有限レート深層学習(DL)に基づくチャネル状態情報(CSI)フィードバック手法を提案する。
提案手法は,ベクトル量子化変分オートエンコーダ(VQ-VAE)フレームワークに基づく潜在ベクトルの有限ビット表現を提供する。
- 参考スコア(独自算出の注目度): 7.934232975873179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a finite-rate deep-learning (DL)-based channel state
information (CSI) feedback method for massive multiple-input multiple-output
(MIMO) systems. The presented method provides a finite-bit representation of
the latent vector based on a vector-quantized variational autoencoder (VQ-VAE)
framework while reducing its computational complexity based on shape-gain
vector quantization. In this method, the magnitude of the latent vector is
quantized using a non-uniform scalar codebook with a proper transformation
function, while the direction of the latent vector is quantized using a
trainable Grassmannian codebook. A multi-rate codebook design strategy is also
developed by introducing a codeword selection rule for a nested codebook along
with the design of a loss function. Simulation results demonstrate that the
proposed method reduces the computational complexity associated with VQ-VAE
while improving CSI reconstruction performance under a given feedback overhead.
- Abstract(参考訳): 本稿では,大規模マルチインプットマルチアウトプット(MIMO)システムのための,有限レート深層学習(DL)に基づくチャネル状態情報(CSI)フィードバック手法を提案する。
提案手法は,ベクトル量子化変分オートエンコーダ(VQ-VAE)フレームワークに基づく潜在ベクトルの有限ビット表現を提供するとともに,形状ゲインベクトル量子化に基づく計算複雑性を低減させる。
この方法では、潜伏ベクトルの大きさを適切な変換関数を持つ非一様スカラー符号ブックを用いて量子化し、訓練可能なグラスマン符号ブックを用いて潜伏ベクトルの方向を量子化する。
また、ネストされたコードブックのコードワード選択ルールと損失関数の設計を導入することで、マルチレートのコードブック設計戦略を開発する。
シミュレーションの結果,提案手法は,与えられたフィードバックオーバヘッド下でのCSI再構成性能を改善しつつ,VQ-VAEに関連する計算複雑性を低減する。
関連論文リスト
- Restructuring Vector Quantization with the Rotation Trick [36.03697966463205]
ベクトル量子化変分オートエンコーダ(VQ-VAE)は、連続的な入力を離散潜在空間に圧縮し、最小限の歪みで再構成するように設計されている。
ベクトル量子化は微分不可能であるため、エンコーダへの勾配はベクトル量子化層を通り抜けるのではなく、直線的な近似で流れる。
本稿では,VQ-VAEのベクトル量子化層を通じて勾配を伝搬する方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T23:39:34Z) - LL-VQ-VAE: Learnable Lattice Vector-Quantization For Efficient
Representations [0.0]
学習可能な格子ベクトル量子化を導入し、離散表現の学習に有効であることを示す。
LL-VQ-VAEと呼ばれるこの手法は、VQ-VAEのベクトル量子化層を格子ベースの離散化に置き換える。
VQ-VAEと比較して、同じトレーニング条件下での低い再構成誤差、短時間のトレーニング、一定数のパラメータで得られる。
論文 参考訳(メタデータ) (2023-10-13T20:03:18Z) - Soft Convex Quantization: Revisiting Vector Quantization with Convex
Optimization [40.1651740183975]
ベクトル量子化(VQ)の直接代用として,ソフト凸量子化(SCQ)を提案する。
SCQは微分凸最適化(DCO)層のように機能する。
CIFAR-10, GTSRB, LSUNデータセット上での有効性を示す。
論文 参考訳(メタデータ) (2023-10-04T17:45:14Z) - Straightening Out the Straight-Through Estimator: Overcoming
Optimization Challenges in Vector Quantized Networks [35.6604960300194]
本研究は,ベクトル量子化を用いたニューラルネットワークのストレートスルー推定による学習課題について検討する。
トレーニング不安定の主な原因は,モデル埋め込みとコードベクトル分布の相違である。
この問題に寄与する要因として,コードブックの勾配幅やコミットメント損失の非対称性などを挙げる。
論文 参考訳(メタデータ) (2023-05-15T17:56:36Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
生成的視点から深層離散表現を学習する。
我々は,コードワード列上の離散分布を付与し,コードワード列上の分布をデータ分布に伝達する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
論文 参考訳(メタデータ) (2023-02-12T13:51:36Z) - Homology-constrained vector quantization entropy regularizer [0.0]
本稿では,ベクトル量子化(VQ)のエントロピー正規化項について,VQ埋め込みの永続的ホモロジーの解析に基づいて述べる。
ホモロジー制約された正規化は、VQ過程のエントロピーを高める効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-11-25T20:09:22Z) - Learning Representations for CSI Adaptive Quantization and Feedback [51.14360605938647]
本稿では,周波数分割二重化システムにおける適応量子化とフィードバックの効率的な手法を提案する。
既存の研究は主に、CSI圧縮のためのオートエンコーダ(AE)ニューラルネットワークの実装に焦点を当てている。
1つはポストトレーニング量子化に基づくもので、もう1つはAEのトレーニング中にコードブックが見つかる方法である。
論文 参考訳(メタデータ) (2022-07-13T08:52:13Z) - Hierarchical Sketch Induction for Paraphrase Generation [79.87892048285819]
本稿では、高密度符号化の分解を学習するHRQ-VAE(Hierarchical Refinement Quantized Variational Autoencoders)を紹介する。
HRQ-VAEを用いて、入力文の構文形式を階層化の経路としてエンコードすることで、テスト時の構文スケッチをより容易に予測できる。
論文 参考訳(メタデータ) (2022-03-07T15:28:36Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。