SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression
- URL: http://arxiv.org/abs/2403.07378v4
- Date: Tue, 28 May 2024 13:41:26 GMT
- Title: SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression
- Authors: Xin Wang, Yu Zheng, Zhongwei Wan, Mi Zhang,
- Abstract summary: We propose SVD-LLM, a new SVD-based compression method for Large Language Models (LLMs)
SVD-LLM incorporates a truncation-aware data whitening strategy to ensure a direct mapping between singular values and compression loss.
Our results demonstrate the superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios.
- Score: 14.818355326032538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancements in Large Language Models (LLMs) have been hindered by their substantial sizes, which necessitate LLM compression methods for practical deployment. Singular Value Decomposition (SVD) offers a promising solution for LLM compression. However, state-of-the-art SVD-based LLM compression methods have two key limitations: truncating smaller singular values may lead to higher compression loss, and the lack of update on the compressed weight after SVD truncation. In this work, we propose SVD-LLM, a new SVD-based LLM compression method that addresses the limitations of existing methods. SVD-LLM incorporates a truncation-aware data whitening strategy to ensure a direct mapping between singular values and compression loss. Moreover, SVD-LLM adopts a layer-wise closed-form model parameter update strategy to compensate for accuracy degradation under high compression ratios. We evaluate SVD-LLM on a total of 10 datasets and eight models from three different LLM families at four different scales. Our results demonstrate the superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios.
Related papers
- EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation [76.72669153805018]
EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks.
EoRA offers a scalable, training-free solution to compensate for compression errors.
arXiv Detail & Related papers (2024-10-28T17:59:03Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - Basis Sharing: Cross-Layer Parameter Sharing for Large Language Model Compression [5.206085750261924]
Large Language Models (LLMs) require significant amount of memory storage in inference.
In this paper, we take a step further to explore parameter sharing across different layers with singular value decomposition.
Comprehensive experiments demonstrate that Basis Sharing outperforms state-of-the-art SVD-based compression approaches.
arXiv Detail & Related papers (2024-10-02T14:30:02Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
This paper introduces textbfModular bfDecomposition (MoDeGPT), a novel structured compression framework.
MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions.
Our experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods.
arXiv Detail & Related papers (2024-08-19T01:30:14Z) - Feature-based Low-Rank Compression of Large Language Models via Bayesian Optimization [40.15915011575071]
Low-rank compression is a promising technique to reduce non-essential parameters in large language models.
We conduct empirical research on the low-rank characteristics of large models.
We propose a low-rank compression method suitable for large language models.
arXiv Detail & Related papers (2024-05-17T08:27:12Z) - Compressing LLMs: The Truth is Rarely Pure and Never Simple [90.05366363633568]
Knowledge-Intensive Compressed LLM BenchmarK aims to redefine the evaluation protocol for compressed Large Language Models.
LLM-KICK unveils many favorable merits and unfortunate plights of current SoTA compression methods.
LLM-KICK is designed to holistically access compressed LLMs' ability for language understanding, reasoning, generation, in-context retrieval, in-context summarization, etc.
arXiv Detail & Related papers (2023-10-02T17:42:37Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) is one of the most popular compression methods that approximates a target matrix with smaller matrices.
Standard SVD treats the parameters within the matrix with equal importance, which is a simple but unrealistic assumption.
We show that our method can perform better than current SOTA methods in neural-based language models.
arXiv Detail & Related papers (2022-11-02T00:58:02Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
We introduce Fisher information to weigh the importance of parameters affecting the model prediction.
We find that our resulting task accuracy is much closer to the original model's performance.
Our method can directly compress a task-specific model while achieving better performance than other compact model strategies.
arXiv Detail & Related papers (2022-06-30T21:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.