A quantum oscillator interacting with a classical oscillator
- URL: http://arxiv.org/abs/2403.07479v1
- Date: Tue, 12 Mar 2024 10:13:02 GMT
- Title: A quantum oscillator interacting with a classical oscillator
- Authors: Muhammad Sajjad, Andrea Russo, Maite Arcos, Andrzej Grudka, Jonathan
Oppenheim
- Abstract summary: We study a quantum oscillator interacting and back-reacting on a classical oscillator.
We solve the system using the classical-quantum path integral formulation.
This serves as a toy model for a number of other systems in which one system can be treated as effectively classical.
- Score: 3.7355759505527133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a quantum oscillator interacting and back-reacting on a classical
oscillator. This can be done consistently provided the quantum system
decoheres, while the backreaction has a stochastic component which causes the
classical system to undergo diffusion. Nonetheless the state of the quantum
oscillator can remain pure conditioned on the trajectory of the classical
oscillator. We solve the system using the classical-quantum path integral
formulation, and investigate slow moving regimes of either the classical or
quantum oscillator. Lastly, we study the correlators of this classicalquantum
setup. We are able to identify the free correlators of the theory and compute
the full partition function perturbatively up to second order. This serves as a
toy model for a number of other systems in which one system can be treated as
effectively classical, such as a scalar quantum field interacting with another
field undergoing decoherence, or a system emitting radiation, one of which is
treated classically.
Related papers
- Heisenberg dynamics of mixed quantum-classical systems [0.0]
Mixed quantum-classical systems involve the interplay of unitary operators acting on the quantum observables and the Lagrangian trajectories.
This interplay reflects an intricate structure which is made particularly challenging by the backreaction excerpted on the classical trajectories by the quantum degrees of freedom.
arXiv Detail & Related papers (2024-05-17T09:36:03Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Motivating semiclassical gravity: a classical-quantum approximation for
bipartite quantum systems [0.0]
We derive a "classical-quantum" approximation scheme for a broad class of bipartite quantum systems.
In this approximation, one subsystem evolves via classical equations of motion with quantum corrections, and the other subsystem evolves quantum mechanically.
arXiv Detail & Related papers (2023-06-01T18:05:33Z) - Hybrid quantum-classical dynamics of pure-dephasing systems [0.0]
We consider the interaction dynamics of a classical oscillator and a quantum two-level system for different pure-dephasing Hamiltonians of the type $widehatH(q,p)=H_C(q,p)boldsymbol1+H_I(q,p)widehatsigma_z$.
arXiv Detail & Related papers (2023-03-08T12:22:00Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.