Objective trajectories in hybrid classical-quantum dynamics
- URL: http://arxiv.org/abs/2011.06009v3
- Date: Mon, 2 Jan 2023 07:18:15 GMT
- Title: Objective trajectories in hybrid classical-quantum dynamics
- Authors: Jonathan Oppenheim, Carlo Sparaciari, Barbara \v{S}oda, Zachary
Weller-Davies
- Abstract summary: We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consistent dynamics which couples classical and quantum degrees of freedom
exists, provided it is stochastic. This dynamics is linear in the hybrid state,
completely positive and trace preserving. One application of this is to study
the back-reaction of quantum fields on space-time which does not suffer from
the pathologies of the semi-classical equations. Here we introduce several toy
models in which to study hybrid classical-quantum evolution, including a qubit
coupled to a particle in a potential, and a quantum harmonic oscillator coupled
to a classical one. We present an unravelling approach to calculate the
dynamics, and provide code to numerically simulate it. Unlike the purely
quantum case, the trajectories (or histories) of this unravelling can be
unique, conditioned on the classical degrees of freedom for discrete
realisations of the dynamics, when different jumps in the classical degrees of
freedom are accompanied by the action of unique operators on the quantum
system. As a result, the ``measurement postulate'' of quantum theory is not
needed; quantum systems become classical because they interact with a
fundamentally classical field.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - A quantum oscillator interacting with a classical oscillator [3.7355759505527133]
We study a quantum oscillator interacting and back-reacting on a classical oscillator.
We solve the system using the classical-quantum path integral formulation.
This serves as a toy model for a number of other systems in which one system can be treated as effectively classical.
arXiv Detail & Related papers (2024-03-12T10:13:02Z) - Quantum gravity with dynamical wave-function collapse via a classical
scalar field [0.0]
In hybrid classical-quantum theories, the dynamics of the classical system induce classicality of the quantum system.
This work introduces a classical-quantum model whereby quantum gravity interacts with a classical scalar field.
arXiv Detail & Related papers (2024-02-26T21:07:05Z) - Hybrid quantum-classical dynamics of pure-dephasing systems [0.0]
We consider the interaction dynamics of a classical oscillator and a quantum two-level system for different pure-dephasing Hamiltonians of the type $widehatH(q,p)=H_C(q,p)boldsymbol1+H_I(q,p)widehatsigma_z$.
arXiv Detail & Related papers (2023-03-08T12:22:00Z) - Learning in quantum games [41.67943127631515]
We show that the induced quantum state dynamics decompose into (i) a classical, commutative component which governs the dynamics of the system's eigenvalues.
We find that the FTQL dynamics incur no more than constant regret in all quantum games.
arXiv Detail & Related papers (2023-02-05T08:23:04Z) - A healthier semi-classical dynamics [0.0]
We study the back-reaction of quantum systems onto classical ones.
We take the starting point that semi-classical physics should be described at all times by a point in classical phase space and a quantum state in Hilbert space.
arXiv Detail & Related papers (2022-08-24T18:04:14Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.