論文の概要: MoAI: Mixture of All Intelligence for Large Language and Vision Models
- arxiv url: http://arxiv.org/abs/2403.07508v2
- Date: Sun, 14 Jul 2024 18:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 01:35:33.488486
- Title: MoAI: Mixture of All Intelligence for Large Language and Vision Models
- Title(参考訳): MoAI: 大規模言語と視覚モデルのための全知の混合
- Authors: Byung-Kwan Lee, Beomchan Park, Chae Won Kim, Yong Man Ro,
- Abstract要約: Mixture of All Intelligence (MoAI)は、命令調整型大規模言語および視覚モデル(LLVM)である。
MoAIは外部セグメンテーション、検出、SGG、OCRモデルの出力から得られる補助的な視覚情報を使用する。
MoAIは、多数のゼロショットビジョン言語(VL)タスクにおいて、オープンソースとクローズドソースのLLVMの両方を著しく上回っている。
- 参考スコア(独自算出の注目度): 42.182009352159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of large language models (LLMs) and instruction tuning has led to the current trend of instruction-tuned large language and vision models (LLVMs). This trend involves either meticulously curating numerous instruction tuning datasets tailored to specific objectives or enlarging LLVMs to manage vast amounts of vision language (VL) data. However, current LLVMs have disregarded the detailed and comprehensive real-world scene understanding available from specialized computer vision (CV) models in visual perception tasks such as segmentation, detection, scene graph generation (SGG), and optical character recognition (OCR). Instead, the existing LLVMs rely mainly on the large capacity and emergent capabilities of their LLM backbones. Therefore, we present a new LLVM, Mixture of All Intelligence (MoAI), which leverages auxiliary visual information obtained from the outputs of external segmentation, detection, SGG, and OCR models. MoAI operates through two newly introduced modules: MoAI-Compressor and MoAI-Mixer. After verbalizing the outputs of the external CV models, the MoAI-Compressor aligns and condenses them to efficiently use relevant auxiliary visual information for VL tasks. MoAI-Mixer then blends three types of intelligence (1) visual features, (2) auxiliary features from the external CV models, and (3) language features by utilizing the concept of Mixture of Experts. Through this integration, MoAI significantly outperforms both open-source and closed-source LLVMs in numerous zero-shot VL tasks, particularly those related to real-world scene understanding such as object existence, positions, relations, and OCR without enlarging the model size or curating extra visual instruction tuning datasets.
- Abstract(参考訳): 大規模言語モデル(LLM)と命令チューニングの台頭は、命令調整された大規模言語とビジョンモデル(LLVM)の現在のトレンドにつながっている。
この傾向は、特定の目的に合わせて調整された多数の命令チューニングデータセットを慎重にキュレートするか、膨大な視覚言語(VL)データを管理するためにLLVMを拡大することを含む。
しかし、現在のLLVMは、セグメンテーション、検出、シーングラフ生成(SGG)、光学文字認識(OCR)といった視覚的知覚タスクにおいて、特殊なコンピュータビジョン(CV)モデルから利用できる詳細で包括的な実世界のシーン理解を無視している。
代わりに、既存のLLVMは、主にLLMバックボーンのキャパシティと創発能力に依存している。
そこで我々は,外部セグメンテーション,検出,SGG,OCRモデルの出力から得られる補助視覚情報を活用する新しいLLVM,Mixture of All Intelligence (MoAI)を提案する。
MoAIは新たに導入されたMoAI-CompressorとMoAI-Mixerの2つのモジュールを運用している。
外部CVモデルの出力を言語化した後、MoAI圧縮機はそれらを整列して凝縮させ、VLタスクに関連した視覚情報を効率的に利用する。
次に、MoAI-Mixerは、(1)視覚的特徴、(2)外部CVモデルからの補助特徴、(3)言語特徴の3種類のインテリジェンスを、エキスパートの混合の概念を利用してブレンドする。
この統合により、MoAIは、多数のゼロショットVLタスク、特にオブジェクトの存在、位置、関係、OCRといった現実世界のシーン理解に関連するタスクにおいて、モデルサイズを拡大したり、余分なビジュアルインストラクションチューニングデータセットをキュレートしたりすることなく、オープンソースとクローズドソースのLLVMを著しく上回っている。
関連論文リスト
- INF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model [71.50973774576431]
本稿では,高解像度画像認識のための新しいMLLM INF-LLaVAを提案する。
我々はDCM(Dual-perspective Cropping Module)を導入し、各サブイメージが局所的な視点から連続的な詳細を含むことを保証する。
第2に,グローバルな特徴と局所的な特徴の相互強化を可能にするDEM(Dual-perspective Enhancement Module)を導入する。
論文 参考訳(メタデータ) (2024-07-23T06:02:30Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-FormerはCLとMIMの相補的な強度を利用するために設計された軽量トランスフォーマーモジュールである。
X-Formerは、2つの凍結した視覚エンコーダから視覚言語表現学習とマルチモーダル・マルチモーダル生成学習をブートストラップする。
さらに、凍結したLLMから視覚から言語への生成学習をブートストラップし、X-Formerの視覚的特徴をLLMで解釈できるようにする。
論文 参考訳(メタデータ) (2024-07-18T18:39:54Z) - MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning [44.497776004372724]
MLLM(Multi-modal large language model)は、様々な視覚的理解タスクにおいて大きな進歩を遂げている。
MG-LLaVAは,多粒度視覚フローを組み込むことで,モデルの視覚処理能力を向上する革新的MLLMである。
さらに, 物体認識能力を向上するため, オフライン検出器によって識別された境界ボックスから得られる物体レベルの特徴を取り入れた。
論文 参考訳(メタデータ) (2024-06-25T17:55:11Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models [42.182009352159]
We present a new efficient LLVM, Mamba based traversal of rationales (Meteor)
豊富な情報を含む長大な論理を埋め込むために,線形時間複雑性を伴う逐次データ処理が可能なMambaアーキテクチャを用いる。
その後、バックボーン・マルチモーダル言語モデル (MLM) を訓練し、合理性の助けを借りて回答を生成する。
論文 参考訳(メタデータ) (2024-05-24T14:04:03Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。