論文の概要: Efficient Vision-and-Language Pre-training with Text-Relevant Image Patch Selection
- arxiv url: http://arxiv.org/abs/2403.07883v1
- Date: Thu, 11 Jan 2024 14:31:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:27:08.985853
- Title: Efficient Vision-and-Language Pre-training with Text-Relevant Image Patch Selection
- Title(参考訳): テキスト関連画像パッチ選択による視覚・言語事前学習の効率化
- Authors: Wei Ye, Chaoya Jiang, Haiyang Xu, Chenhao Ye, Chenliang Li, Ming Yan, Shikun Zhang, Songhang Huang, Fei Huang,
- Abstract要約: Vision Transformers (ViT) は、大規模なVisionとLanguage Pre-trainingモデルで人気が高まっている。
これまでの研究では、ViTsの有効性が実証されているが、長い視覚的シーケンスによって引き起こされる計算の非効率性に苦慮している。
TRIPSを導入し、視覚バックボーン内のテキスト誘導パッチ選択層を用いて視覚列を縮小する。
実験の結果, TRIPSは40%の高速化を実現し, 下流タスクの競争力や優れた性能を維持していることがわかった。
- 参考スコア(独自算出の注目度): 66.72992463712299
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Vision Transformers (ViTs) have become increasingly popular in large-scale Vision and Language Pre-training (VLP) models. Although previous VLP research has demonstrated the efficacy of ViTs, these efforts still struggle with computational inefficiencies caused by lengthy visual sequences. To address this challenge, we introduce an efficient VLP approach called TRIPS, which stands for Text-Relevant Image Patch Selection. TRIPS progressively reduces the visual sequence using a text-guided patch-selection layer in the visual backbone, thereby accelerating both training and inference processes. This patch-selection layer dynamically computes text-dependent visual attention, enabling it to identify attentive image tokens with text guidance and fuse inattentive ones in an end-to-end fashion. Importantly, TRIPS does not add any extra parameters and generalizes to most ViT-based VLP models. We incorporate TRIPS into three representative VLP models covering single-stream, dual-stream, and generative paradigms, and conduct extensive experiments on five widely-used multi-modal benchmark datasets. Our experimental results reveal that TRIPS delivers a 40% speedup, while maintaining competitive or superior performance on downstream tasks.
- Abstract(参考訳): Vision Transformers (ViT) は、大規模なVision and Language Pre-training (VLP) モデルで人気が高まっている。
これまでのVLP研究はViTの有効性を示したが、これらの努力は長い視覚的シーケンスによって引き起こされる計算の非効率性に苦慮している。
この課題に対処するために,テキスト関連画像マッチング選択(Text-Relevant Image Patch Selection)の略であるTRIPSという効率的なVLPアプローチを導入する。
TRIPSは、テキスト誘導パッチ選択層を視覚バックボーンに使用することにより、徐々に視覚的シーケンスを減らし、トレーニングと推論の両方を高速化する。
このパッチ選択層は、テキスト依存の視覚的注意を動的に計算し、テキストガイダンスで注意深い画像トークンを識別し、エンドツーエンドで不注意なトークンをフューズすることができる。
重要なことに、TRIPSは余分なパラメータを追加せず、ほとんどのViTベースのVLPモデルに一般化する。
TRIPSを1ストリーム,2ストリーム,生成パラダイムをカバーする3つの代表的なVLPモデルに組み込み,広範に使用されている5つのマルチモーダルベンチマークデータセットに対して広範な実験を行った。
実験の結果, TRIPSは40%の高速化を実現し, 下流タスクの競争力や優れた性能を維持していることがわかった。
関連論文リスト
- Attention Prompting on Image for Large Vision-Language Models [63.794304207664176]
本稿では,画像上の注意喚起という新しいプロンプト手法を提案する。
我々は,CLIPのような補助モデルを用いて,テキストクエリに依存する入力画像に対するアテンションヒートマップを生成する。
各種バイソン言語ベンチマークの実験により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-09-25T17:59:13Z) - APoLLo: Unified Adapter and Prompt Learning for Vision Language Models [58.9772868980283]
本稿では,視覚言語モデルに対する適応学習とプロンプト学習を組み合わせた統合マルチモーダルアプローチであるAPoLLoを提案する。
APoLLoは10種類の画像認識データセットに対して、MaPLe(SOTA)よりも6.03%向上している。
論文 参考訳(メタデータ) (2023-12-04T01:42:09Z) - BUS:Efficient and Effective Vision-language Pre-training with Bottom-Up
Patch Summarization [89.52943129132217]
本稿では,BUS という名前のボトムアップ・パッチ・サマリゼーション手法を提案し,視覚的トークン列の簡潔な要約を効率的に学習する。
テキスト・セマンティックス・アウェア・パッチセレクタ(TSPS)をViTバックボーンに組み込んで粗い粒度のビジュアルトークン抽出を行う。
このボトムアップコラボレーションによって、BUSは高いトレーニング効率を得られると同時に、効率性を維持したり、改善したりすることができます。
論文 参考訳(メタデータ) (2023-07-17T14:08:17Z) - Exploiting the Textual Potential from Vision-Language Pre-training for
Text-based Person Search [17.360982091304137]
テキストベースPerson Search(TPS)は、歩行者を検索画像の代わりにテキスト記述にマッチさせることを目的としている。
最近のビジョンランゲージ事前学習モデルは、下流のTPSタスクに伝達可能な知識をもたらすことができ、より効率的なパフォーマンス向上をもたらす。
しかし、既存のTPS手法では、学習済みのビジュアルエンコーダのみを使用し、対応するテキスト表現を無視している。
論文 参考訳(メタデータ) (2023-03-08T10:41:22Z) - RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in
Autonomous Driving [80.14669385741202]
視覚変換器(ViT)は多くの画像ベースのベンチマークで最先端の結果を得た。
ViTはトレーニングが難しいことで知られており、強力な表現を学ぶために大量のトレーニングデータを必要とする。
提案手法はRangeViTと呼ばれ,nuScenes や Semantic KITTI において既存のプロジェクションベースの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-24T18:50:48Z) - Learning by Hallucinating: Vision-Language Pre-training with Weak
Supervision [6.8582563015193]
弱教師付き視覚言語事前学習は、ほとんどあるいは全くペアのデータを持たないクロスモーダルアライメントを学習することを目的としている。
オブジェクトタグと視覚的特徴をペアリングする最近の手法は、様々なV-L下流タスクで整列ペアで訓練されたモデルと同等のパフォーマンスを達成するのに役立っている。
Visual Vocabulary based Feature Hallucinator (WFH) を用いたモデル管理のためのペアV-Lデータの欠如に対処する。
WFHはテキストから視覚的な幻覚を生成し、元の未読テキストとペアリングすることで、モダリティ間のより多様な相互作用を可能にする。
論文 参考訳(メタデータ) (2022-10-24T20:30:55Z) - Long-Short Temporal Contrastive Learning of Video Transformers [62.71874976426988]
ビデオのみのデータセットにおけるビデオトランスフォーマーの自己教師付き事前トレーニングは、大規模画像データセットでの教師付き事前トレーニングで得られたものよりも、同等以上のアクション認識結果につながる可能性がある。
我々の手法は、長短時空間コントラスト学習(Long-Short Temporal Contrastive Learning)と呼ばれ、ビデオトランスフォーマーが、より長い時間的範囲から捉えた時間的文脈を予測することによって、効果的なクリップレベルの表現を学習することを可能にする。
論文 参考訳(メタデータ) (2021-06-17T02:30:26Z) - ViLT: Vision-and-Language Transformer Without Convolution or Region
Supervision [10.584604416749965]
視覚・言語下流タスクのための最小限の視覚・言語変換器(ViLT)モデルを提案する。
ViLTは、視覚入力の処理が、テキスト入力を処理するのと同じ畳み込みのない方法で大幅に単純化されるという意味で、モノリシックである。
論文 参考訳(メタデータ) (2021-02-05T18:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。