論文の概要: $\widetilde{O}(T^{-1})$ Convergence to (Coarse) Correlated Equilibria in Full-Information General-Sum Markov Games
- arxiv url: http://arxiv.org/abs/2403.07890v1
- Date: Fri, 2 Feb 2024 20:40:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:27:08.970634
- Title: $\widetilde{O}(T^{-1})$ Convergence to (Coarse) Correlated Equilibria in Full-Information General-Sum Markov Games
- Title(参考訳): $\widetilde{O}(T^{-1})$ Convergence to (Coarse) Correlated Equilibria in full-information General-Sum Markov Games
- Authors: Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Tamer Başar,
- Abstract要約: 楽観的フォロー・ザ・レギュラライズド・リーダー・アルゴリズムは,フル情報汎用マルコフゲームにおいて,$widetildeO(T-1)$-approximate iterationsを$T$内で見つけることができることを示す。
- 参考スコア(独自算出の注目度): 8.215874655947335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: No-regret learning has a long history of being closely connected to game theory. Recent works have devised uncoupled no-regret learning dynamics that, when adopted by all the players in normal-form games, converge to various equilibrium solutions at a near-optimal rate of $\widetilde{O}(T^{-1})$, a significant improvement over the $O(1/\sqrt{T})$ rate of classic no-regret learners. However, analogous convergence results are scarce in Markov games, a more generic setting that lays the foundation for multi-agent reinforcement learning. In this work, we close this gap by showing that the optimistic-follow-the-regularized-leader (OFTRL) algorithm, together with appropriate value update procedures, can find $\widetilde{O}(T^{-1})$-approximate (coarse) correlated equilibria in full-information general-sum Markov games within $T$ iterations. Numerical results are also included to corroborate our theoretical findings.
- Abstract(参考訳): 非回帰学習は、ゲーム理論と密接な関係を持つ長い歴史を持つ。
最近の研究は、正規形式ゲームにおける全てのプレイヤーが採用する非連立学習力学を考案し、古典的非連立学習者のレートである$O(1/\sqrt{T})よりも大幅に向上した$\widetilde{O}(T^{-1})$で、様々な平衡解に収束する。
しかし、類似の収束結果はマルコフゲームでは不足しており、マルチエージェント強化学習の基礎となるより一般的な設定である。
本研究では,楽観的フォロー・ザ・レギュラライズド・リーダー(OFTRL)アルゴリズムと適切な値更新手順を併用して,フルインフォームの汎用マルコフゲームにおいて,$\widetilde{O}(T^{-1})$-approximate (coarse) 相関平衡が$T$反復で得られることを示すことにより,このギャップを埋める。
また,我々の理論的知見を裏付ける数値的な結果も含んでいる。
関連論文リスト
- Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms [71.73971094342349]
オンライン学習によるセルフプレイは、大規模な2人プレイのゼロサムゲームを解くための重要な方法の1つだ。
我々は,OMWUが支払行列のサイズに対数依存するなど,いくつかの利点があることを示した。
我々は、過去のことをすぐに忘れない幅広い種類のアルゴリズムが、すべて同じ問題に悩まされていることを証明している。
論文 参考訳(メタデータ) (2024-06-15T13:26:17Z) - Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games
with Bandit Feedback [49.1061436241109]
非漸近収束率の非結合、収束、合理的なアルゴリズムの開発に注力する。
我々のアルゴリズムは[Chen et al., 2021, Cen et al., 2021]と関係があり、エントロピー正規化技術に基づいている。
論文 参考訳(メタデータ) (2023-03-05T18:08:54Z) - $O(T^{-1})$ Convergence of Optimistic-Follow-the-Regularized-Leader in
Two-Player Zero-Sum Markov Games [10.915751393257011]
O(T-1)$-approximate Nash equilibrium in $T$ for two-player zero-sum Markov games with full information。
これにより、Zhang et al (2022)に最近示されている$tildeO(T-5/6)$収束率が向上する。
論文 参考訳(メタデータ) (2022-09-26T05:35:44Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
2人プレイのゼロサムマルコフゲームは多エージェント強化学習においておそらく最も基本的な設定である。
我々は,$$ widetildeObiggを用いて,$varepsilon$-approximate Markov NEポリシーを学習する学習アルゴリズムを開発した。
我々は、分散型量の役割を明確にするFTRLに対する洗練された後悔境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T17:24:55Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
本稿では,2プレイヤーゼロサムゲームにおいて,$widetildemathcalO((XA+YB)/varepsilon2)$プレイのエピソードのみを必要とするアルゴリズムの最初の行を,$varepsilon$-approximate Nash平衡を求める。
これにより$widetildemathcalO((X2A+Y2B)/varepsilon2)$が$widetildemathcalO(maxX,
論文 参考訳(メタデータ) (2022-02-03T18:18:28Z) - Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback [29.553652241608997]
本研究では,テキストモオと強いモノトーンゲームの研究を行い,その学習方法について検討した。
我々はまず,新しい帯域学習アルゴリズムを構築し,$tildeTheta(nsqrtT)$の単一エージェント最適後悔を実現することを示す。
そこで我々は,このオープンな問題を解決し,広範にわたるバンディットゲーム理論学習に寄与した。
論文 参考訳(メタデータ) (2021-12-06T08:27:54Z) - Near-Optimal No-Regret Learning for Correlated Equilibria in
Multi-Player General-Sum Games [104.74734408204749]
マルチプレイヤーの汎用正規形式ゲームにおいて,OMWU(Optimistic Multiplicative Weights Update)を用いているエージェントが全員,O(textrmpolylog(T))$(T$)$(T$)$(OMWU)$(OMWU)$(OMWU)$(OMWU)$(OMWU)$)であることを示す。
外部の後悔から内部の後悔へと結果を拡張し、後悔を交換することで、近似した平衡に収束する非結合学習ダイナミクスを確立する。
論文 参考訳(メタデータ) (2021-11-11T01:19:53Z) - When Can We Learn General-Sum Markov Games with a Large Number of
Players Sample-Efficiently? [10.397170312149067]
本稿では,m$-player General-sum Markovゲームの設定において,学習目標がより優れたサンプル複雑性を許容するものについて検討する。
まず,$epsilon$-Coarse Correlated Equilibrium (CCE)を$widetildemathcalO(H5Smax_ile m A_i / epsilon2)$ episodesで学習するアルゴリズムを設計する。
第二に、マルコフポテンシャルゲームの重要な特別な場合を考え、$widet内で$epsilon$-approximate Nash平衡を学ぶアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-08T15:06:22Z) - Near-Optimal No-Regret Learning in General Games [31.293412884145066]
マルチプレイヤー汎用ゲームにおいて,Optimistic Hedge が $rm poly(log T)$ regret を達成することを示す。
我々の境界の系は、最適化的ヘッジが一般ゲームにおいて$tildeOleft(frac 1Tright)$の速度で粗相関平衡に収束するということである。
論文 参考訳(メタデータ) (2021-08-16T06:53:02Z) - Near-Optimal Reinforcement Learning with Self-Play [50.29853537456737]
我々は,直接の監督なしに自己対決で最適な政策を学習するセルフプレイアルゴリズムに焦点をあてる。
本稿では,サンプル複雑性を$tildemathcalO(SAB)$,サンプル複雑性を$tildemathcalO(S(A+B)$とする新しいemphNash Vラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T05:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。