Change Point Detection with Copula Entropy based Two-Sample Test
- URL: http://arxiv.org/abs/2403.07892v1
- Date: Sat, 3 Feb 2024 20:36:48 GMT
- Title: Change Point Detection with Copula Entropy based Two-Sample Test
- Authors: Jian Ma,
- Abstract summary: Change point detection is a typical task that aim to find changes in time series and can be tackled with two-sample test.
Copula Entropy is a mathematical concept for measuring statistical independence and a two-sample test based on it was introduced recently.
We propose a nonparametric multivariate method for multiple change point detection with the copula entropy-based two-sample test.
- Score: 1.7125489646780319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change point detection is a typical task that aim to find changes in time series and can be tackled with two-sample test. Copula Entropy is a mathematical concept for measuring statistical independence and a two-sample test based on it was introduced recently. In this paper we propose a nonparametric multivariate method for multiple change point detection with the copula entropy-based two-sample test. The single change point detection is first proposed as a group of two-sample tests on every points of time series data and the change point is considered as with the maximum of the test statistics. The multiple change point detection is then proposed by combining the single change point detection method with binary segmentation strategy. We verified the effectiveness of our method and compared it with the other similar methods on the simulated univariate and multivariate data and the Nile data.
Related papers
- Causal Discovery-Driven Change Point Detection in Time Series [32.424281626708336]
Change point detection in time series seeks to identify times when the probability distribution of time series changes.
In practical applications, we may be interested only in certain components of the time series, exploring abrupt changes in their distributions.
arXiv Detail & Related papers (2024-07-10T00:54:42Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Change Point Detection with Conceptors [0.6526824510982799]
offline change point detection retrospectively locates change points in a time series.
Many nonparametric methods that target i.i.d. mean and variance changes fail in the presence of nonlinear temporal dependence.
We propose use of a conceptor matrix to learn the characteristic dynamics of a baseline training window with arbitrary dependence structure.
The associated echo state network acts as a featurizer of the data, and change points are identified from the nature of the interactions between the features and their relationship to the baseline state.
arXiv Detail & Related papers (2023-08-11T16:32:00Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - Deep learning model solves change point detection for multiple change
types [69.77452691994712]
A change points detection aims to catch an abrupt disorder in data distribution.
We propose an approach that works in the multiple-distributions scenario.
arXiv Detail & Related papers (2022-04-15T09:44:21Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
We develop a fundamentally new and general framework for sequential change detection.
Our procedures come with clean, nonasymptotic bounds on the average run length.
We show how to design their mixtures in order to achieve both statistical and computational efficiency.
arXiv Detail & Related papers (2022-03-07T17:25:02Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
We consider online change detection of high dimensional data streams with sparse changes, where only a subset of data streams can be observed at each sensing time point due to limited sensing capacities.
On the one hand, the detection scheme should be able to deal with partially observable data and meanwhile have efficient detection power for sparse changes.
In this paper, we propose a novel detection scheme called CDSSD. In particular, it describes the structure of high dimensional data with sparse changes by smooth-sparse decomposition.
arXiv Detail & Related papers (2020-09-22T16:03:04Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Multinomial Sampling for Hierarchical Change-Point Detection [0.0]
We propose a multinomial sampling methodology that improves the detection rate and reduces the delay.
Our experiments show results that outperform the baseline method and we also provide an example oriented to a human behavior study.
arXiv Detail & Related papers (2020-07-24T09:18:17Z) - On Matched Filtering for Statistical Change Point Detection [13.64446865914411]
Non-parametric randomness and distribution-free two-sample tests have been the foundation of many change point detection algorithms.
We address these issues by deriving and applying filters matched to the expected temporal signatures of a change.
Our method allows for the localization of change points without the use of ad-hoc post-processing.
arXiv Detail & Related papers (2020-06-09T22:45:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.