AI and Identity
- URL: http://arxiv.org/abs/2403.07924v2
- Date: Wed, 10 Apr 2024 18:08:57 GMT
- Title: AI and Identity
- Authors: Sri Yash Tadimalla, Mary Lou Maher,
- Abstract summary: This paper examines the intersection of AI and identity as a pathway to understand biases, inequalities, and ethical considerations in AI development and deployment.
We propose a framework that highlights the need for diversity in AI across three dimensions: Creators, Creations, and Consequences through the lens of identity.
- Score: 0.8879149917735942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI-empowered technologies' impact on the world is undeniable, reshaping industries, revolutionizing how humans interact with technology, transforming educational paradigms, and redefining social codes. However, this rapid growth is accompanied by two notable challenges: a lack of diversity within the AI field and a widening AI divide. In this context, This paper examines the intersection of AI and identity as a pathway to understand biases, inequalities, and ethical considerations in AI development and deployment. We present a multifaceted definition of AI identity, which encompasses its creators, applications, and their broader impacts. Understanding AI's identity involves understanding the associations between the individuals involved in AI's development, the technologies produced, and the social, ethical, and psychological implications. After exploring the AI identity ecosystem and its societal dynamics, We propose a framework that highlights the need for diversity in AI across three dimensions: Creators, Creations, and Consequences through the lens of identity. This paper proposes the need for a comprehensive approach to fostering a more inclusive and responsible AI ecosystem through the lens of identity.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
I challenge the prevalent narrow conceptualisation of AI as tools, and argue for the importance of alternative conceptualisations of AI.
I highlight the differences between human intelligence and artificial information processing, and posit that AI can also serve as an instrument for understanding human learning.
The paper presents three unique conceptualisations of AI: the externalization of human cognition, the internalization of AI models to influence human mental models, and the extension of human cognition via tightly coupled human-AI hybrid intelligence systems.
arXiv Detail & Related papers (2024-03-24T10:07:46Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems.
A significant challenge in AI development is the effective operationalization of D&I principles.
This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI)
arXiv Detail & Related papers (2023-12-11T02:44:39Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.