Speech Robust Bench: A Robustness Benchmark For Speech Recognition
- URL: http://arxiv.org/abs/2403.07937v2
- Date: Wed, 25 Sep 2024 00:28:55 GMT
- Title: Speech Robust Bench: A Robustness Benchmark For Speech Recognition
- Authors: Muhammad A. Shah, David Solans Noguero, Mikko A. Heikkila, Bhiksha Raj, Nicolas Kourtellis,
- Abstract summary: Speech Robust Bench (SRB) is a benchmark for evaluating the robustness of ASR models to diverse corruptions.
SRB is composed of 114 input perturbations which simulate an heterogeneous range of corruptions that ASR models may encounter when deployed in the wild.
- Score: 20.758654420612793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Automatic Speech Recognition (ASR) models become ever more pervasive, it is important to ensure that they make reliable predictions under corruptions present in the physical and digital world. We propose Speech Robust Bench (SRB), a comprehensive benchmark for evaluating the robustness of ASR models to diverse corruptions. SRB is composed of 114 input perturbations which simulate an heterogeneous range of corruptions that ASR models may encounter when deployed in the wild. We use SRB to evaluate the robustness of several state-of-the-art ASR models and observe that model size and certain modeling choices such as the use of discrete representations, or self-training appear to be conducive to robustness. We extend this analysis to measure the robustness of ASR models on data from various demographic subgroups, namely English and Spanish speakers, and males and females. Our results revealed noticeable disparities in the model's robustness across subgroups. We believe that SRB will significantly facilitate future research towards robust ASR models, by making it easier to conduct comprehensive and comparable robustness evaluations.
Related papers
- Transferable Adversarial Attacks against ASR [43.766547483367795]
We study the vulnerability of practical black-box attacks in cutting-edge automatic speech recognition models.
We propose a speech-aware gradient optimization approach (SAGO) for ASR, which forces mistranscription with minimal impact on human imperceptibility.
Our comprehensive experimental results reveal performance enhancements compared to baseline approaches across five models on two databases.
arXiv Detail & Related papers (2024-11-14T06:32:31Z) - Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective [111.58315434849047]
robustness of neural information retrieval models (IR) models has garnered significant attention.
We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance.
We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models.
arXiv Detail & Related papers (2024-07-09T16:07:01Z) - $\text{R}^2$-Bench: Benchmarking the Robustness of Referring Perception
Models under Perturbations [36.74309198908876]
We present a comprehensive taxonomy of perturbations, and then develop a versatile toolbox for synthesizing and evaluating the effects of composite disturbances.
We propose the $textR2$-Agent, an LLM-based agent that simplifies and automates model evaluation via natural language instructions.
arXiv Detail & Related papers (2024-03-07T22:18:12Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - Factual Consistency Oriented Speech Recognition [23.754107608608106]
The proposed framework optimize the ASR model to maximize an expected factual consistency score between ASR hypotheses and ground-truth transcriptions.
It is shown that training the ASR models with the proposed framework improves the speech summarization quality as measured by the factual consistency of meeting conversation summaries.
arXiv Detail & Related papers (2023-02-24T00:01:41Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - Improving Confidence Estimation on Out-of-Domain Data for End-to-End
Speech Recognition [25.595147432155642]
This paper proposes two approaches to improve the model-based confidence estimators on out-of-domain data.
Experiments show that the proposed methods can significantly improve the confidence metrics on TED-LIUM and Switchboard datasets.
arXiv Detail & Related papers (2021-10-07T10:44:27Z) - Fine-tuning of Pre-trained End-to-end Speech Recognition with Generative
Adversarial Networks [10.723935272906461]
Adversarial training of end-to-end (E2E) ASR systems using generative adversarial networks (GAN) has recently been explored.
We introduce a novel framework for fine-tuning a pre-trained ASR model using the GAN objective.
Our proposed approach outperforms baselines and conventional GAN-based adversarial models.
arXiv Detail & Related papers (2021-03-10T17:40:48Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.