論文の概要: LG-Traj: LLM Guided Pedestrian Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2403.08032v1
- Date: Tue, 12 Mar 2024 19:06:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 16:55:17.632351
- Title: LG-Traj: LLM Guided Pedestrian Trajectory Prediction
- Title(参考訳): LG-Traj: LLMガイドによる歩行者軌道予測
- Authors: Pranav Singh Chib, Pravendra Singh
- Abstract要約: LG-Trajは歩行者の過去・保存軌道に現れる動きの手がかりを生成する新しい手法である。
これらの動きの手がかりは、歩行者の座標とともに、下層の表現をよりよく理解するのに役立つ。
本手法では,移動パターンをモデル化するモーションエンコーダと,歩行者間の社会的相互作用を捉えるソーシャルデコーダからなるトランスフォーマーアーキテクチャを用いる。
- 参考スコア(独自算出の注目度): 9.385936248154987
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate pedestrian trajectory prediction is crucial for various
applications, and it requires a deep understanding of pedestrian motion
patterns in dynamic environments. However, existing pedestrian trajectory
prediction methods still need more exploration to fully leverage these motion
patterns. This paper investigates the possibilities of using Large Language
Models (LLMs) to improve pedestrian trajectory prediction tasks by inducing
motion cues. We introduce LG-Traj, a novel approach incorporating LLMs to
generate motion cues present in pedestrian past/observed trajectories. Our
approach also incorporates motion cues present in pedestrian future
trajectories by clustering future trajectories of training data using a mixture
of Gaussians. These motion cues, along with pedestrian coordinates, facilitate
a better understanding of the underlying representation. Furthermore, we
utilize singular value decomposition to augment the observed trajectories,
incorporating them into the model learning process to further enhance
representation learning. Our method employs a transformer-based architecture
comprising a motion encoder to model motion patterns and a social decoder to
capture social interactions among pedestrians. We demonstrate the effectiveness
of our approach on popular pedestrian trajectory prediction benchmarks, namely
ETH-UCY and SDD, and present various ablation experiments to validate our
approach.
- Abstract(参考訳): 歩行者の正確な軌跡予測は様々な応用に不可欠であり,動的環境における歩行者の動きパターンを深く理解する必要がある。
しかし、既存の歩行者軌道予測手法では、これらの動きパターンを完全に活用するためには、さらなる探索が必要である。
本稿では,Large Language Models (LLMs) を用いた歩行者軌道予測作業の改善の可能性について検討する。
LLMを取り入れたLG-Trajを導入し、歩行者の過去・保存軌道に現れる動きの手がかりを生成する。
提案手法は,ガウスの混在による訓練データの将来の軌跡をクラスタリングすることで,歩行者の将来の軌跡に現れる動きの手がかりを取り入れたものである。
これらの動きの手がかりは、歩行者の座標とともに、下層の表現をよりよく理解するのに役立つ。
さらに、特異値分解を利用して観察された軌道を拡大し、それらをモデル学習プロセスに組み込んで表現学習をさらに強化する。
本手法では,移動パターンをモデル化するモーションエンコーダと,歩行者間の社会的相互作用を捉えるソーシャルデコーダからなるトランスフォーマーアーキテクチャを用いる。
ETH-UCY や SDD といった一般的な歩行者軌跡予測ベンチマークに対するアプローチの有効性を実証し,提案手法の有効性を検証するために,様々なアブレーション実験を行った。
関連論文リスト
- MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
歩行者軌跡予測(STGlow)のための二重グラフマーを用いた新しい生成フローベースフレームワークを提案する。
本手法は,動作の正確なログライクな振る舞いを最適化することにより,基礎となるデータ分布をより正確にモデル化することができる。
いくつかのベンチマークによる実験結果から,本手法は従来の最先端手法に比べて性能が向上することが示された。
論文 参考訳(メタデータ) (2022-11-21T07:29:24Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
動き TRansformer (MTR) は、大域的意図の局所化と局所的な動きの洗練の合同最適化として、動き予測をモデル化する。
MTRは、限界運動予測と関節運動予測の両方において最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-09-27T16:23:14Z) - Action-based Contrastive Learning for Trajectory Prediction [4.675212251005813]
軌道予測は、自律運転など、人間のロボットのインタラクションを成功させる上で不可欠なタスクである。
本研究では,移動カメラを用いたファースト・パーソン・ビュー・セッティングにおける将来の歩行者軌跡予測の問題に対処する。
本稿では,歩行者行動情報を利用して学習軌跡埋め込みを改善する,新たな行動に基づくコントラスト学習損失を提案する。
論文 参考訳(メタデータ) (2022-07-18T15:02:27Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
本稿では,新しい2次元畳み込みモデルを導入し,歩行者軌道予測への新たなアプローチを提案する。
この新モデルはリカレントモデルより優れており、ETHとTrajNetデータセットの最先端の結果が得られる。
また,歩行者の位置と強力なデータ拡張手法を効果的に表現するシステムを提案する。
論文 参考訳(メタデータ) (2020-10-12T15:51:01Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
軌道抽出と予測のための新しいラベルなしアルゴリズムAutoTrajectoryを提案する。
動画中の移動物体をよりよく捉えるために,ダイナミックポイントを導入する。
ビデオ内の歩行者などの移動物体を表すインスタンスポイントに動的ポイントを集約する。
論文 参考訳(メタデータ) (2020-07-11T08:43:34Z) - Graph2Kernel Grid-LSTM: A Multi-Cued Model for Pedestrian Trajectory
Prediction by Learning Adaptive Neighborhoods [10.57164270098353]
本稿では,歩行者地区がデザインに適応しうることを提案することによって,インタラクションモデリングの新しい視点を示す。
我々のモデルは、いくつかの公開テストされた監視ビデオに類似した特徴を照合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-07-03T19:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。