論文の概要: Authorship Style Transfer with Policy Optimization
- arxiv url: http://arxiv.org/abs/2403.08043v2
- Date: Sun, 28 Jul 2024 04:29:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 23:47:39.656523
- Title: Authorship Style Transfer with Policy Optimization
- Title(参考訳): ポリシー最適化によるオーサシップスタイルのトランスファー
- Authors: Shuai Liu, Shantanu Agarwal, Jonathan May,
- Abstract要約: オーサシップスタイルの転送は、ソースの本来の意味を保ちながら、指定されたテキストを指定されたターゲットに書き換えることを目的としている。
既存のアプローチでは、モデルトレーニングのための多くのターゲットスタイルの例が利用可能になっている。
- 参考スコア(独自算出の注目度): 26.34892894935038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Authorship style transfer aims to rewrite a given text into a specified target while preserving the original meaning in the source. Existing approaches rely on the availability of a large number of target style exemplars for model training. However, these overlook cases where a limited number of target style examples are available. The development of parameter-efficient transfer learning techniques and policy optimization (PO) approaches suggest lightweight PO is a feasible approach to low-resource style transfer. In this work, we propose a simple two-stage tune-and-optimize technique for low-resource textual style transfer. We apply our technique to authorship transfer as well as a larger-data native language style task and in both cases find it outperforms state-of-the-art baseline models.
- Abstract(参考訳): オーサシップスタイルの転送は、ソースの本来の意味を保ちながら、指定されたテキストを指定されたターゲットに書き換えることを目的としている。
既存のアプローチでは、モデルトレーニングのための多くのターゲットスタイルの例が利用可能になっている。
しかし、これらの見落としのケースでは、限られたターゲットスタイルの例が利用可能である。
パラメータ効率変換学習技術とポリシー最適化(PO)アプローチの開発により,軽量POは低リソース型転送の実現可能なアプローチであることが示唆された。
そこで本研究では,低リソーステキストスタイル転送のための単純な2段階チューン・アンド・最適化手法を提案する。
本手法はオーサシップ転送だけでなく,より大規模なネイティブ言語スタイルのタスクにも適用し,どちらの場合においても最先端のベースラインモデルよりも優れています。
関連論文リスト
- SETTP: Style Extraction and Tunable Inference via Dual-level Transferable Prompt Learning [22.04285529067442]
デュアルレベルトランスファーブル・プロンプト学習によるスタイル抽出とチューナブル推論を提案する。
SETTPは、高リソーススタイル転送から基本スタイルの特徴を含むソーススタイルレベルのプロンプトを学習する。
実験によると、SETTPは最先端の手法に匹敵するパフォーマンスを達成するためにデータボリュームの1/20しか必要としない。
論文 参考訳(メタデータ) (2024-07-22T11:34:48Z) - TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings [51.30454130214374]
本稿では,TinyStylerについて紹介する。
我々は、TinyStylerのテキスト属性スタイル転送機能について、自動評価と人的評価で評価する。
私たちのモデルはhttps://huggingface.co/tinystyler/tinystyler.comで公開されています。
論文 参考訳(メタデータ) (2024-06-21T18:41:22Z) - Diffusion-based Human Motion Style Transfer with Semantic Guidance [23.600154466988073]
拡散モデルに基づく数ショットスタイルのトランスファー学習のための新しいフレームワークを提案する。
第1段階では,拡散に基づくテキスト・ツー・モーション・モデルを生成前として事前学習する。
第2段階では、単一スタイルの例に基づいて、事前学習した拡散モデルを数ショットで微調整し、スタイル転送を可能にする。
論文 参考訳(メタデータ) (2024-03-20T05:52:11Z) - STEER: Unified Style Transfer with Expert Reinforcement [71.3995732115262]
STEER: Unified Style Transfer with Expert Reinforcementは、スタイル転送のための限られた並列データという課題を克服するために開発された、統一されたフレームワークである。
STEERは堅牢で、ドメイン外のデータでスタイル転送機能を維持し、様々なスタイルでほぼすべてのベースラインを超越している。
論文 参考訳(メタデータ) (2023-11-13T09:02:30Z) - ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style
Transfer [57.6482608202409]
テキストスタイル転送は、意味を保ちながらテキストのスタイル特性を変換するタスクである。
任意のスタイルに柔軟に適応できる汎用型転送のための新しい拡散型フレームワークを提案する。
本研究では,人的評価と自動評価の両面から,Enron Email Corpusの手法を検証するとともに,形式性,感情,さらにはオーサシップスタイルの伝達にも優れることを示す。
論文 参考訳(メタデータ) (2023-08-29T17:36:02Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Conversation Style Transfer using Few-Shot Learning [56.43383396058639]
本稿では,会話スタイルの伝達を数ショットの学習問題として紹介する。
そこで本研究では,スタイルフリー対話による課題をピボットとして解くための,コンテキスト内学習手法を提案する。
会話スタイルの転送は下流のタスクにも役立ちます。
論文 参考訳(メタデータ) (2023-02-16T15:27:00Z) - Semi-supervised Formality Style Transfer using Language Model
Discriminator and Mutual Information Maximization [52.867459839641526]
フォーマル・スタイル・トランスファー(英: Formality style transfer)とは、非公式な文を文法的に正しい形式文に変換するタスクである。
本稿では,言語モデルに基づく識別器を用いて,文が形式的である確率を最大化する半教師付き形式表現スタイル転送モデルを提案する。
実験の結果,我々のモデルは,自動計測と人的判断の両面で,従来の最先端のベースラインを著しく上回りました。
論文 参考訳(メタデータ) (2020-10-10T21:05:56Z) - ST$^2$: Small-data Text Style Transfer via Multi-task Meta-Learning [14.271083093944753]
テキストスタイルの転送は、コンテンツを保存しながら、あるスタイルの文を別のスタイルに言い換えることを目的としている。
並列トレーニングデータがないため、最先端の手法は教師なしであり、コンテンツを共有する大規模なデータセットに依存している。
そこで本研究では,任意のテキストスタイル間を移動するためのメタラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2020-04-24T13:36:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。