論文の概要: Rethinking Loss Functions for Fact Verification
- arxiv url: http://arxiv.org/abs/2403.08174v1
- Date: Wed, 13 Mar 2024 01:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 15:49:49.364503
- Title: Rethinking Loss Functions for Fact Verification
- Title(参考訳): ファクト検証のための損失関数の再考
- Authors: Yuta Mukobara, Yutaro Shigeto, Masashi Shimbo
- Abstract要約: FEVERに適した2つのタスク特化目標を策定する。
実験により,提案する目的関数が標準のクロスエントロピーより優れていることを確認した。
- 参考スコア(独自算出の注目度): 1.2983290324156112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore loss functions for fact verification in the FEVER shared task.
While the cross-entropy loss is a standard objective for training verdict
predictors, it fails to capture the heterogeneity among the FEVER verdict
classes. In this paper, we develop two task-specific objectives tailored to
FEVER. Experimental results confirm that the proposed objective functions
outperform the standard cross-entropy. Performance is further improved when
these objectives are combined with simple class weighting, which effectively
overcomes the imbalance in the training data. The souce code is available at
https://github.com/yuta-mukobara/RLF-KGAT
- Abstract(参考訳): FEVER共有タスクにおける事実検証のための損失関数について検討する。
クロスエントロピー損失は、検証予測器を訓練するための標準目標であるが、FEVER検証クラス間の不均一性を捉えることに失敗する。
本稿では,FEVERに適した2つのタスク固有目的について述べる。
実験により,提案する目的関数が標準のクロスエントロピーより優れていることを確認した。
これらの目的を単純なクラス重み付けと組み合わせることで、トレーニングデータの不均衡を効果的に克服し、パフォーマンスをさらに向上する。
Souceのコードはhttps://github.com/yuta-mukobara/RLF-KGATで入手できる。
関連論文リスト
- Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning [0.3281128493853064]
過去のデータにアクセスせずにタスクのシーケンス上でモデルをトレーニングする問題に対処する。
既存の方法は、特徴抽出器の潜在空間におけるガウス分布としてクラスを表す。
本稿では,タスクからタスクへ共分散行列を適用する新しい手法であるAdaGaussを提案する。
論文 参考訳(メタデータ) (2024-09-26T20:18:14Z) - Next Generation Loss Function for Image Classification [0.0]
我々は、遺伝的プログラミング(GP)アプローチを利用して、クロスエントロピー(CE)損失を含むよく知られた損失関数に挑戦する。
NGL(Next Generation Loss)と呼ばれる1つの関数は、テストされたすべてのデータセットで、同じか、より優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-04-19T15:26:36Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
距離学習パラダイムに該当する新しいレペラ・トラクタ損失を提案するが、ペアを生成する必要がなく、直接L2メトリックに最適化する。
CBIRタスクにおいて,畳み込みアーキテクチャと変圧器アーキテクチャの両方を用いて,少数ショットおよびフルセットトレーニングの文脈で提案した目的を評価する。
論文 参考訳(メタデータ) (2023-06-01T12:53:10Z) - Contrastive Classification and Representation Learning with
Probabilistic Interpretation [5.979778557940212]
クロスエントロピー損失は、分類に基づくタスクの主目的関数として機能している。
ネットワークの分類器とバックボーンのパラメータを協調的に学習する教師付きコントラスト訓練の新バージョンを提案する。
論文 参考訳(メタデータ) (2022-11-07T15:57:24Z) - Bridging the Gap Between Target Networks and Functional Regularization [61.051716530459586]
関数空間における凸正規化器であり、容易に調整できる明示的な関数正規化を提案する。
提案手法の収束を理論的・実験的に解析し,より理論的に根ざした機能正規化アプローチでターゲットネットワークを置き換えることにより,サンプリング効率と性能が向上することが実証された。
論文 参考訳(メタデータ) (2022-10-21T22:27:07Z) - On Training Targets and Activation Functions for Deep Representation
Learning in Text-Dependent Speaker Verification [18.19207291891767]
主な考慮事項は、トレーニングターゲット、アクティベーション関数、損失関数である。
本研究では,話者識別を訓練対象とする場合の損失関数の範囲について検討する。
GELUはSigmoidと比較してTD-SVの誤差率を大幅に低減できることを示した。
論文 参考訳(メタデータ) (2022-01-17T14:32:51Z) - Mixing between the Cross Entropy and the Expectation Loss Terms [89.30385901335323]
クロスエントロピー損失は、トレーニング中にサンプルを分類するのが難しくなる傾向にある。
最適化目標に期待損失を加えることで,ネットワークの精度が向上することを示す。
実験により,新しいトレーニングプロトコルにより,多様な分類領域における性能が向上することが示された。
論文 参考訳(メタデータ) (2021-09-12T23:14:06Z) - Learning Stable Classifiers by Transferring Unstable Features [59.06169363181417]
本研究では,素早い相関関係の存在下での伝達学習について検討する。
提案手法は, ソースタスクで学習した安定な特徴抽出器を直接転送しても, 対象タスクのバイアスを排除できないことを実験的に実証する。
我々は、ソースタスクの不安定な特徴とターゲットタスクの不安定な特徴が直接関連していると仮定する。
論文 参考訳(メタデータ) (2021-06-15T02:41:12Z) - Optimized Loss Functions for Object detection: A Case Study on Nighttime
Vehicle Detection [0.0]
本稿では,2つの損失関数を同時に分類と局所化に最適化する。
本研究は, 正試料の局在化精度向上のためにのみ相関が適用されている既存研究と比較して, 相関を利用して真に硬い負試料を得る。
MIoUと呼ばれる新しい局所化損失は、予測ボックスとターゲットボックスの間のマハラノビス距離を組み込むことで、DIoU損失の勾配の不整合を解消する。
論文 参考訳(メタデータ) (2020-11-11T03:00:49Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
本稿では,F測度に対する微分可能な近似法を提案し,標準バックプロパゲーションを用いてネットワークをトレーニングする。
我々は、アダルト、コミュニティ、犯罪の2つの標準フェアネスデータセットの実験を行い、ATISデータセットの音声・インテリジェンス検出と音声・COCOデータセットの音声・イメージ概念分類を行った。
これらの4つのタスクのすべてにおいて、F測定は、クロスエントロピー損失関数で訓練されたモデルと比較して、最大8%の絶対的な絶対的な改善を含む、マイクロF1スコアの改善をもたらす。
論文 参考訳(メタデータ) (2020-08-08T03:02:27Z) - A Unified Framework of Surrogate Loss by Refactoring and Interpolation [65.60014616444623]
勾配勾配を有する深層ネットワークのトレーニングにおいて,サロゲート損失を発生させる統一フレームワークUniLossを導入する。
3つのタスクと4つのデータセットに対するUniLossの有効性を検証する。
論文 参考訳(メタデータ) (2020-07-27T21:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。