A Dual-domain Regularization Method for Ring Artifact Removal of X-ray CT
- URL: http://arxiv.org/abs/2403.08247v2
- Date: Fri, 15 Mar 2024 03:22:05 GMT
- Title: A Dual-domain Regularization Method for Ring Artifact Removal of X-ray CT
- Authors: Hongyang Zhu, Xin Lu, Yanwei Qin, Xinran Yu, Tianjiao Sun, Yunsong Zhao,
- Abstract summary: Ring artifacts in computed tomography images, arising from the undesirable responses of detector units, significantly degrade image quality and diagnostic reliability.
We propose a dual-domain regularization model to effectively remove ring artifacts, while maintaining the integrity of the original CT image.
The proposed model corrects the vertical stripe artifacts on the sinogram by innovatively updating the response inconsistency compensation coefficients of detector units.
- Score: 3.060824004762835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ring artifacts in computed tomography images, arising from the undesirable responses of detector units, significantly degrade image quality and diagnostic reliability. To address this challenge, we propose a dual-domain regularization model to effectively remove ring artifacts, while maintaining the integrity of the original CT image. The proposed model corrects the vertical stripe artifacts on the sinogram by innovatively updating the response inconsistency compensation coefficients of detector units, which is achieved by employing the group sparse constraint and the projection-view direction sparse constraint on the stripe artifacts. Simultaneously, we apply the sparse constraint on the reconstructed image to further rectified ring artifacts in the image domain. The key advantage of the proposed method lies in considering the relationship between the response inconsistency compensation coefficients of the detector units and the projection views, which enables a more accurate correction of the response of the detector units. An alternating minimization method is designed to solve the model. Comparative experiments on real photon counting detector data demonstrate that the proposed method not only surpasses existing methods in removing ring artifacts but also excels in preserving structural details and image fidelity.
Related papers
- Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation [50.16004183320537]
We describe a method for recovering the irradiance underlying a collection of images corrupted by atmospheric turbulence.
We select one of the images as a reference, and model the deformation in this image by the aggregation of the optical flow from it to other images.
We achieve state-of-the-art performance despite its simplicity.
arXiv Detail & Related papers (2024-05-06T17:39:53Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - FreeSeed: Frequency-band-aware and Self-guided Network for Sparse-view
CT Reconstruction [34.91517935951518]
Sparse-view computed tomography (CT) is a promising solution for expediting the scanning process and mitigating radiation exposure to patients.
Recently, deep learning-based image post-processing methods have shown promising results.
We propose a simple yet effective FREquency-band-awarE and SElf-guidED network, termed FreeSeed, which can effectively remove artifact and recover missing detail.
arXiv Detail & Related papers (2023-07-12T03:39:54Z) - Anomaly Detection with Conditioned Denoising Diffusion Models [32.37548329437798]
We introduce Denoising Diffusion Anomaly Detection (DDAD), a novel denoising process for image reconstruction conditioned on a target image.
Our anomaly detection framework employs the conditioning mechanism, where the target image is set as the input image to guide the denoising process.
DDAD achieves state-of-the-art results of (99.8 %) and (98.9 %) image-level AUROC respectively.
arXiv Detail & Related papers (2023-05-25T11:54:58Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with Stain-shaped noise [25.85927871251385]
anomaly detection relies on the reconstruction residual or, alternatively, on the reconstruction uncertainty.
We consider an autoencoder architecture with skip connections to improve the sharpness of the reconstruction.
We show that this model favors the reconstruction of clean images from arbitrary real-world images, regardless of the actual defects appearance.
arXiv Detail & Related papers (2020-08-29T13:50:49Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.