Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation
- URL: http://arxiv.org/abs/2405.03662v2
- Date: Mon, 24 Jun 2024 05:48:24 GMT
- Title: Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation
- Authors: Dong Lao, Congli Wang, Alex Wong, Stefano Soatto,
- Abstract summary: We describe a method for recovering the irradiance underlying a collection of images corrupted by atmospheric turbulence.
We select one of the images as a reference, and model the deformation in this image by the aggregation of the optical flow from it to other images.
We achieve state-of-the-art performance despite its simplicity.
- Score: 50.16004183320537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a method for recovering the irradiance underlying a collection of images corrupted by atmospheric turbulence. Since supervised data is often technically impossible to obtain, assumptions and biases have to be imposed to solve this inverse problem, and we choose to model them explicitly. Rather than initializing a latent irradiance ("template") by heuristics to estimate deformation, we select one of the images as a reference, and model the deformation in this image by the aggregation of the optical flow from it to other images, exploiting a prior imposed by Central Limit Theorem. Then with a novel flow inversion module, the model registers each image TO the template but WITHOUT the template, avoiding artifacts related to poor template initialization. To illustrate the robustness of the method, we simply (i) select the first frame as the reference and (ii) use the simplest optical flow to estimate the warpings, yet the improvement in registration is decisive in the final reconstruction, as we achieve state-of-the-art performance despite its simplicity. The method establishes a strong baseline that can be further improved by integrating it seamlessly into more sophisticated pipelines, or with domain-specific methods if so desired.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Model Collapse in the Self-Consuming Chain of Diffusion Finetuning: A Novel Perspective from Quantitative Trait Modeling [10.159932782892865]
generative models have reached a unique threshold where their outputs are indistinguishable from real data.
Severe degradation in performance has been observed when iterative loops of training and generation occur.
We propose Reusable Diffusion Finetuning (ReDiFine), a simple yet effective strategy inspired by genetic mutations.
arXiv Detail & Related papers (2024-07-04T13:41:54Z) - Bayesian Conditioned Diffusion Models for Inverse Problems [11.67269909384503]
Diffusion models excel in many image reconstruction tasks that involve inverse problems based on a forward measurement operator.
We propose a novel Bayesian conditioning technique for diffusion models, BCDM, based on score-functions associated with the conditional distribution of desired images.
We show state-of-the-art performance in image dealiasing, deblurring, super-resolution, and inpainting with the proposed technique.
arXiv Detail & Related papers (2024-06-14T07:13:03Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - A Unified Conditional Framework for Diffusion-based Image Restoration [39.418415473235235]
We present a unified conditional framework based on diffusion models for image restoration.
We leverage a lightweight UNet to predict initial guidance and the diffusion model to learn the residual of the guidance.
To handle high-resolution images, we propose a simple yet effective inter-step patch-splitting strategy.
arXiv Detail & Related papers (2023-05-31T17:22:24Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.