Better Fit: Accommodate Variations in Clothing Types for Virtual Try-on
- URL: http://arxiv.org/abs/2403.08453v1
- Date: Wed, 13 Mar 2024 12:07:14 GMT
- Title: Better Fit: Accommodate Variations in Clothing Types for Virtual Try-on
- Authors: Xuanpu Zhang and Dan Song and Pengxin Zhan and Qingguo Chen and
Kuilong Liu and Anan Liu
- Abstract summary: Image-based virtual try-on aims to transfer target in-shop clothing to a dressed model image.
We propose an adaptive mask training paradigm that dynamically adjusts training masks.
For unpaired try-on validation, we construct a comprehensive cross-try-on benchmark.
- Score: 25.550019373321653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based virtual try-on aims to transfer target in-shop clothing to a
dressed model image, the objectives of which are totally taking off original
clothing while preserving the contents outside of the try-on area, naturally
wearing target clothing and correctly inpainting the gap between target
clothing and original clothing. Tremendous efforts have been made to facilitate
this popular research area, but cannot keep the type of target clothing with
the try-on area affected by original clothing. In this paper, we focus on the
unpaired virtual try-on situation where target clothing and original clothing
on the model are different, i.e., the practical scenario. To break the
correlation between the try-on area and the original clothing and make the
model learn the correct information to inpaint, we propose an adaptive mask
training paradigm that dynamically adjusts training masks. It not only improves
the alignment and fit of clothing but also significantly enhances the fidelity
of virtual try-on experience. Furthermore, we for the first time propose two
metrics for unpaired try-on evaluation, the Semantic-Densepose-Ratio (SDR) and
Skeleton-LPIPS (S-LPIPS), to evaluate the correctness of clothing type and the
accuracy of clothing texture. For unpaired try-on validation, we construct a
comprehensive cross-try-on benchmark (Cross-27) with distinctive clothing items
and model physiques, covering a broad try-on scenarios. Experiments demonstrate
the effectiveness of the proposed methods, contributing to the advancement of
virtual try-on technology and offering new insights and tools for future
research in the field. The code, model and benchmark will be publicly released.
Related papers
- PocoLoco: A Point Cloud Diffusion Model of Human Shape in Loose Clothing [97.83361232792214]
PocoLoco is the first template-free, point-based, pose-conditioned generative model for 3D humans in loose clothing.
We formulate avatar clothing deformation as a conditional point-cloud generation task within the denoising diffusion framework.
We release a dataset of two subjects performing various poses in loose clothing with a total of 75K point clouds.
arXiv Detail & Related papers (2024-11-06T20:42:13Z) - StableVITON: Learning Semantic Correspondence with Latent Diffusion
Model for Virtual Try-On [35.227896906556026]
Given a clothing image and a person image, an image-based virtual try-on aims to generate a customized image that appears natural and accurately reflects the characteristics of the clothing image.
In this work, we aim to expand the applicability of the pre-trained diffusion model so that it can be utilized independently for the virtual try-on task.
Our proposed zero cross-attention blocks not only preserve the clothing details by learning the semantic correspondence but also generate high-fidelity images by utilizing the inherent knowledge of the pre-trained model in the warping process.
arXiv Detail & Related papers (2023-12-04T08:27:59Z) - ClothFit: Cloth-Human-Attribute Guided Virtual Try-On Network Using 3D
Simulated Dataset [5.260305201345232]
We propose a novel virtual try-on method called ClothFit.
It can predict the draping shape of a garment on a target body based on the actual size of the garment and human attributes.
Our experimental results demonstrate that ClothFit can significantly improve the existing state-of-the-art methods in terms of photo-realistic virtual try-on results.
arXiv Detail & Related papers (2023-06-24T08:57:36Z) - Learning Garment DensePose for Robust Warping in Virtual Try-On [72.13052519560462]
We propose a robust warping method for virtual try-on based on a learned garment DensePose.
Our method achieves the state-of-the-art equivalent on virtual try-on benchmarks.
arXiv Detail & Related papers (2023-03-30T20:02:29Z) - Fill in Fabrics: Body-Aware Self-Supervised Inpainting for Image-Based
Virtual Try-On [3.5698678013121334]
We propose a self-supervised conditional generative adversarial network based framework comprised of a Fabricator and a Segmenter, Warper and Fuser.
The Fabricator reconstructs the clothing image when provided with a masked clothing as input, and learns the overall structure of the clothing by filling in fabrics.
A virtual try-on pipeline is then trained by transferring the learned representations from the Fabricator to Warper in an effort to warp and refine the target clothing.
arXiv Detail & Related papers (2022-10-03T13:25:31Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
We propose an Arbitrary Virtual Try-On Network (AVTON) for all-type clothes.
AVTON can synthesize realistic try-on images by preserving and trading off characteristics of the target clothes and the reference person.
Our approach can achieve better performance compared with the state-of-the-art virtual try-on methods.
arXiv Detail & Related papers (2021-11-24T08:59:56Z) - Towards Scalable Unpaired Virtual Try-On via Patch-Routed
Spatially-Adaptive GAN [66.3650689395967]
We propose a texture-preserving end-to-end network, the PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN), that facilitates real-world unpaired virtual try-on.
To disentangle the style and spatial information of each garment, PASTA-GAN consists of an innovative patch-routed disentanglement module.
arXiv Detail & Related papers (2021-11-20T08:36:12Z) - Shape Controllable Virtual Try-on for Underwear Models [0.0]
We propose a Shape Controllable Virtual Try-On Network (SC-VTON) to dress clothing for underwear models.
SC-VTON integrates information of model and clothing to generate warped clothing image.
Our method can generate high-resolution results with detailed textures.
arXiv Detail & Related papers (2021-07-28T04:01:01Z) - Cloth Interactive Transformer for Virtual Try-On [106.21605249649957]
We propose a novel two-stage cloth interactive transformer (CIT) method for the virtual try-on task.
In the first stage, we design a CIT matching block, aiming to precisely capture the long-range correlations between the cloth-agnostic person information and the in-shop cloth information.
In the second stage, we put forth a CIT reasoning block for establishing global mutual interactive dependencies among person representation, the warped clothing item, and the corresponding warped cloth mask.
arXiv Detail & Related papers (2021-04-12T14:45:32Z) - Neural 3D Clothes Retargeting from a Single Image [91.5030622330039]
We present a method of clothes; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image.
The problem is fundamentally ill-posed as attaining the ground truth data is impossible, i.e. images of people wearing the different 3D clothing template model model at exact same pose.
We propose a semi-supervised learning framework that validates the physical plausibility of 3D deformation by matching with the prescribed body-to-cloth contact points and clothing to fit onto the unlabeled silhouette.
arXiv Detail & Related papers (2021-01-29T20:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.