Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
- URL: http://arxiv.org/abs/2403.08477v3
- Date: Mon, 1 Jul 2024 15:29:16 GMT
- Title: Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
- Authors: Shengzhuang Chen, Jihoon Tack, Yunqiao Yang, Yee Whye Teh, Jonathan Richard Schwarz, Ying Wei,
- Abstract summary: We introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches.
SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models.
- Score: 33.58165081033569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent successes suggest that parameter-efficient fine-tuning of foundation models as the state-of-the-art method for transfer learning in vision, replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient fine-tuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code is publicly available.
Related papers
- Learning to Unlearn for Robust Machine Unlearning [6.488418950340473]
We introduce a novel Learning-to-Unlearn (LTU) framework to optimize the unlearning process.
LTU includes a meta-optimization scheme that facilitates models to effectively preserve generalizable knowledge.
We also introduce a Gradient Harmonization strategy to align the optimization trajectories for remembering and forgetting.
arXiv Detail & Related papers (2024-07-15T07:36:00Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - MAT: Mixed-Strategy Game of Adversarial Training in Fine-tuning [20.167933675945324]
We propose a novel Mixed-strategy Adrial Training algorithm (MAT) for adversarial training.
MAT significantly outperforms the state-of-the-art methods on both the GLUE and ANLI benchmarks in terms of generalization and robustness.
arXiv Detail & Related papers (2023-06-27T23:19:53Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
We propose Self-improving Momentum Target (SiMT) to improve the performance of a meta-learner.
SiMT generates the target model by adapting from the temporal ensemble of the meta-learner.
We show that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods.
arXiv Detail & Related papers (2022-10-11T06:45:15Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
Model-agnostic meta-learning (MAML) has emerged as one of the most successful meta-learning techniques in few-shot learning.
Despite the generalization power of the meta-model, it remains elusive that how adversarial robustness can be maintained by MAML in few-shot learning.
We propose a general but easily-optimized robustness-regularized meta-learning framework, which allows the use of unlabeled data augmentation, fast adversarial attack generation, and computationally-light fine-tuning.
arXiv Detail & Related papers (2021-02-20T22:03:04Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z) - Generalized Reinforcement Meta Learning for Few-Shot Optimization [3.7675996866306845]
We present a generic and flexible Reinforcement Learning (RL) based meta-learning framework for the problem of few-shot learning.
Our framework could be easily extended to do network architecture search.
arXiv Detail & Related papers (2020-05-04T03:21:05Z) - Curriculum in Gradient-Based Meta-Reinforcement Learning [10.447238563837173]
We show that gradient-based meta-learners are sensitive to task distributions.
With the wrong curriculum, agents suffer the effects of meta-overfitting, shallow adaptation, and adaptation instability.
arXiv Detail & Related papers (2020-02-19T01:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.