DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain
Generalization in Federated Learning
- URL: http://arxiv.org/abs/2403.08506v1
- Date: Mon, 11 Mar 2024 15:58:15 GMT
- Title: DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain
Generalization in Federated Learning
- Authors: Sikai Bai, Jie Zhang, Shuaicheng Li, Song Guo, Jingcai Guo, Jun Hou,
Tao Han, and Xiaocheng Lu
- Abstract summary: Federated learning (FL) has emerged as a powerful paradigm for learning from decentralized data.
Most existing FL methods assume that domain labels are provided during training, and their evaluation imposes explicit constraints on the number of domains.
We propose Disentangled Prompt Tuning (DiPrompT), a method that tackles the above restrictions by learning adaptive prompts for domain generalization in a distributed manner.
- Score: 20.51179258856028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a powerful paradigm for learning from
decentralized data, and federated domain generalization further considers the
test dataset (target domain) is absent from the decentralized training data
(source domains). However, most existing FL methods assume that domain labels
are provided during training, and their evaluation imposes explicit constraints
on the number of domains, which must strictly match the number of clients.
Because of the underutilization of numerous edge devices and additional
cross-client domain annotations in the real world, such restrictions may be
impractical and involve potential privacy leaks. In this paper, we propose an
efficient and novel approach, called Disentangled Prompt Tuning (DiPrompT), a
method that tackles the above restrictions by learning adaptive prompts for
domain generalization in a distributed manner. Specifically, we first design
two types of prompts, i.e., global prompt to capture general knowledge across
all clients and domain prompts to capture domain-specific knowledge. They
eliminate the restriction on the one-to-one mapping between source domains and
local clients. Furthermore, a dynamic query metric is introduced to
automatically search the suitable domain label for each sample, which includes
two-substep text-image alignments based on prompt tuning without
labor-intensive annotation. Extensive experiments on multiple datasets
demonstrate that our DiPrompT achieves superior domain generalization
performance over state-of-the-art FL methods when domain labels are not
provided, and even outperforms many centralized learning methods using domain
labels.
Related papers
- Domain Adaptive Few-Shot Open-Set Learning [36.39622440120531]
We propose Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET.
Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain.
We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets.
arXiv Detail & Related papers (2023-09-22T12:04:47Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains.
We propose a novel representation learning methodology that selectively enforces prediction consistency between source domains.
arXiv Detail & Related papers (2022-06-16T01:57:35Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
In many settings, privacy concerns prohibit obtaining domain labels for the training data samples.
We propose a domain-adaptive approach to this problem, which operates in two steps.
Our approach achieves state-of-the-art performance on a variety of domain generalization benchmarks without using domain labels.
arXiv Detail & Related papers (2021-12-09T08:57:01Z) - Better Pseudo-label: Joint Domain-aware Label and Dual-classifier for
Semi-supervised Domain Generalization [26.255457629490135]
We propose a novel framework via joint domain-aware labels and dual-classifier to produce high-quality pseudo-labels.
To predict accurate pseudo-labels under domain shift, a domain-aware pseudo-labeling module is developed.
Also, considering inconsistent goals between generalization and pseudo-labeling, we employ a dual-classifier to independently perform pseudo-labeling and domain generalization in the training process.
arXiv Detail & Related papers (2021-10-10T15:17:27Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
We propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains.
Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-07-12T17:57:46Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains.
We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks.
arXiv Detail & Related papers (2020-11-25T12:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.