A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations
- URL: http://arxiv.org/abs/2403.08569v1
- Date: Wed, 13 Mar 2024 14:25:15 GMT
- Title: A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations
- Authors: Hang Hu, Sidi Wu, Guoxiong Cai, Na Liu
- Abstract summary: A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
- Score: 2.1217718037013635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have successfully addressed various
computational physics problems based on partial differential equations (PDEs).
However, while tackling issues related to irregularities like singularities and
oscillations, trained solutions usually suffer low accuracy. In addition, most
current works only offer the trained solution for predetermined input
parameters. If any change occurs in input parameters, transfer learning or
retraining is required, and traditional numerical techniques also need an
independent simulation. In this work, a physics-driven GraphSAGE approach
(PD-GraphSAGE) based on the Galerkin method and piecewise polynomial nodal
basis functions is presented to solve computational problems governed by
irregular PDEs and to develop parametric PDE surrogate models. This approach
employs graph representations of physical domains, thereby reducing the demands
for evaluated points due to local refinement. A distance-related edge feature
and a feature mapping strategy are devised to help training and convergence for
singularity and oscillation situations, respectively. The merits of the
proposed method are demonstrated through a couple of cases. Moreover, the
robust PDE surrogate model for heat conduction problems parameterized by the
Gaussian random field source is successfully established, which not only
provides the solution accurately but is several times faster than the finite
element method in our experiments.
Related papers
- Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods [14.791541465418263]
We propose learning a solver, i.e., solving partial differential equations (PDEs) using a physics-informed iterative algorithm trained on data.
Our method learns to condition a gradient descent algorithm that automatically adapts to each PDE instance.
We demonstrate the effectiveness of our method through empirical experiments on multiple datasets.
arXiv Detail & Related papers (2024-10-09T12:28:32Z) - Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs.
We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities.
Our study focuses on the steady-state heat equation within heterogeneous materials.
arXiv Detail & Related papers (2024-07-04T21:23:12Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
We represent the PDE as a neural network and use an intermediate state representation similar to a Physics-Informed Neural Network (PINN)
We present a penalty method and a widely used trust-region barrier method to solve this constrained optimization problem.
Our results on the Burgers' and the Korteweg-De Vreis equations demonstrate that the latter constrained method outperforms the penalty method.
arXiv Detail & Related papers (2024-05-30T01:55:44Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
Graph neural networks show promise in accurately representing irregularly meshed objects and learning their dynamics.
In this work, we represent meshes naturally as graphs, process these using Graph Networks, and formulate our physics-based loss to provide an unsupervised learning framework for partial differential equations (PDE)
Our framework will enable the application of PDE solvers in interactive settings, such as model-based control of soft-body deformations.
arXiv Detail & Related papers (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.