Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs
- URL: http://arxiv.org/abs/2407.04157v2
- Date: Tue, 22 Oct 2024 12:04:49 GMT
- Title: Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs
- Authors: Shahed Rezaei, Reza Najian Asl, Kianoosh Taghikhani, Ahmad Moeineddin, Michael Kaliske, Markus Apel,
- Abstract summary: We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs.
We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities.
Our study focuses on the steady-state heat equation within heterogeneous materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs. The proposed approach extends each of the aforementioned methods and unifies them within a single framework. We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities, meaning the derivatives of the solution space with respect to the design space. These capabilities enable gradient-based optimization without the typical sensitivity analysis costs, unlike adjoint methods that scale directly with the number of response functions. Our Finite Operator Learning (FOL) approach uses an uncomplicated feed-forward neural network model to directly map the discrete design space (i.e. parametric input space) to the discrete solution space (i.e. finite number of sensor points in the arbitrary shape domain) ensuring compliance with physical laws by designing them into loss functions. The discretized governing equations, as well as the design and solution spaces, can be derived from any well-established numerical techniques. In this work, we employ the Finite Element Method (FEM) to approximate fields and their spatial derivatives. Subsequently, we conduct Sobolev training to minimize a multi-objective loss function, which includes the discretized weak form of the energy functional, boundary conditions violations, and the stationarity of the residuals with respect to the design variables. Our study focuses on the steady-state heat equation within heterogeneous materials that exhibits significant phase contrast and possibly temperature-dependent conductivity. The network's tangent matrix is directly used for gradient-based optimization to improve the microstructure's heat transfer characteristics. ...
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Quantum algorithm for partial differential equations of non-conservative systems with spatially varying parameters [1.7453899104963828]
Partial differential equations (PDEs) are crucial for modeling various physical phenomena such as heat transfer, fluid flow, and electromagnetic waves.
In computer-aided engineering (CAE), the ability to handle fine resolutions and large computational models is essential for improving product performance and reducing development costs.
We propose a quantum algorithm for solving second-order linear PDEs of non-conservative systems with spatially varying parameters.
arXiv Detail & Related papers (2024-07-06T09:23:04Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - Integration of physics-informed operator learning and finite element
method for parametric learning of partial differential equations [0.0]
We present a method that employs physics-informed deep learning techniques for solving partial differential equations.
The focus is on the steady-state heat equations within heterogeneous solids exhibiting significant phase contrast.
We benchmark our methodology against the standard finite element method, demonstrating accurate yet faster predictions.
arXiv Detail & Related papers (2024-01-04T17:01:54Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
Graph neural networks show promise in accurately representing irregularly meshed objects and learning their dynamics.
In this work, we represent meshes naturally as graphs, process these using Graph Networks, and formulate our physics-based loss to provide an unsupervised learning framework for partial differential equations (PDE)
Our framework will enable the application of PDE solvers in interactive settings, such as model-based control of soft-body deformations.
arXiv Detail & Related papers (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.