Real-time 3D semantic occupancy prediction for autonomous vehicles using memory-efficient sparse convolution
- URL: http://arxiv.org/abs/2403.08748v3
- Date: Sun, 19 May 2024 00:25:54 GMT
- Title: Real-time 3D semantic occupancy prediction for autonomous vehicles using memory-efficient sparse convolution
- Authors: Samuel Sze, Lars Kunze,
- Abstract summary: In autonomous vehicles, understanding the surrounding 3D environment of the ego vehicle in real-time is essential.
State of the art 3D mapping methods leverage transformers with cross-attention mechanisms to elevate 2D vision-centric camera features into the 3D domain.
This paper introduces an approach that extracts features from front-view 2D camera images and LiDAR scans, then employs a sparse convolution network (Minkowski Engine) for 3D semantic occupancy prediction.
- Score: 4.204990010424084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous vehicles, understanding the surrounding 3D environment of the ego vehicle in real-time is essential. A compact way to represent scenes while encoding geometric distances and semantic object information is via 3D semantic occupancy maps. State of the art 3D mapping methods leverage transformers with cross-attention mechanisms to elevate 2D vision-centric camera features into the 3D domain. However, these methods encounter significant challenges in real-time applications due to their high computational demands during inference. This limitation is particularly problematic in autonomous vehicles, where GPU resources must be shared with other tasks such as localization and planning. In this paper, we introduce an approach that extracts features from front-view 2D camera images and LiDAR scans, then employs a sparse convolution network (Minkowski Engine), for 3D semantic occupancy prediction. Given that outdoor scenes in autonomous driving scenarios are inherently sparse, the utilization of sparse convolution is particularly apt. By jointly solving the problems of 3D scene completion of sparse scenes and 3D semantic segmentation, we provide a more efficient learning framework suitable for real-time applications in autonomous vehicles. We also demonstrate competitive accuracy on the nuScenes dataset.
Related papers
- Regulating Intermediate 3D Features for Vision-Centric Autonomous
Driving [26.03800936700545]
We propose to regulate intermediate dense 3D features with the help of volume rendering.
Experimental results on the Occ3D and nuScenes datasets demonstrate that Vampire facilitates fine-grained and appropriate extraction of dense 3D features.
arXiv Detail & Related papers (2023-12-19T04:09:05Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3D scene understanding plays a vital role in vision-based autonomous driving.
We propose a SurroundOcc method to predict the 3D occupancy with multi-camera images.
arXiv Detail & Related papers (2023-03-16T17:59:08Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - Ground-aware Monocular 3D Object Detection for Autonomous Driving [6.5702792909006735]
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a challenging task for low-cost urban autonomous driving and mobile robots.
Most of the existing algorithms are based on the geometric constraints in 2D-3D correspondence, which stems from generic 6D object pose estimation.
We introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning.
arXiv Detail & Related papers (2021-02-01T08:18:24Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Crowdsourced 3D Mapping: A Combined Multi-View Geometry and
Self-Supervised Learning Approach [10.610403488989428]
We propose a framework that estimates the 3D positions of semantically meaningful landmarks without assuming known camera intrinsics.
We utilize multi-view geometry as well as deep learning based self-calibration, depth, and ego-motion estimation for traffic sign positioning.
We achieve an average single-journey relative and absolute positioning accuracy of 39cm and 1.26m respectively.
arXiv Detail & Related papers (2020-07-25T12:10:16Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
We propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization.
We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.
arXiv Detail & Related papers (2020-07-19T01:15:12Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image.
Our approach combines the strengths of deep learning and the elegance of traditional techniques.
We have integrated these algorithms with an autonomous driving system.
arXiv Detail & Related papers (2020-07-16T05:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.