論文の概要: Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN
- arxiv url: http://arxiv.org/abs/2403.08775v1
- Date: Sun, 21 Jan 2024 21:57:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 05:50:41.729386
- Title: Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN
- Title(参考訳): 分散SDNにおける適応型コントローラ同期のための制約付き強化学習
- Authors: Ioannis Panitsas, Akrit Mudvari, Leandros Tassiulas,
- Abstract要約: この研究は、AR/VRタスクのオフロードにおいて、高いレイテンシ閾値を保証するために、価値ベースとポリシーベースの手法の両方を含む深層強化学習(DRL)技術を検討することに焦点を当てる。
評価結果は,レイテンシやロードバランシングといった個々のネットワークメトリクスを最適化する上で,値ベースの手法が優れているのに対して,ポリシベースのアプローチは,突然のネットワーク変更や再構成に適応する上で,ロバスト性が高いことを示している。
- 参考スコア(独自算出の注目度): 7.277944770202078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In software-defined networking (SDN), the implementation of distributed SDN controllers, with each controller responsible for managing a specific sub-network or domain, plays a critical role in achieving a balance between centralized control, scalability, reliability, and network efficiency. These controllers must be synchronized to maintain a logically centralized view of the entire network. While there are various approaches for synchronizing distributed SDN controllers, most tend to prioritize goals such as optimization of communication latency or load balancing, often neglecting to address both the aspects simultaneously. This limitation becomes particularly significant when considering applications like Augmented and Virtual Reality (AR/VR), which demand constrained network latencies and substantial computational resources. Additionally, many existing studies in this field predominantly rely on value-based reinforcement learning (RL) methods, overlooking the potential advantages offered by state-of-the-art policy-based RL algorithms. To bridge this gap, our work focuses on examining deep reinforcement learning (DRL) techniques, encompassing both value-based and policy-based methods, to guarantee an upper latency threshold for AR/VR task offloading within SDN environments, while selecting the most cost-effective servers for AR/VR task offloading. Our evaluation results indicate that while value-based methods excel in optimizing individual network metrics such as latency or load balancing, policy-based approaches exhibit greater robustness in adapting to sudden network changes or reconfiguration.
- Abstract(参考訳): SDN(Software-Defined Network)では、特定のサブネットワークやドメインの管理を担当する各コントローラによる分散SDNコントローラの実装が、集中制御、スケーラビリティ、信頼性、ネットワーク効率のバランスを達成する上で重要な役割を果たす。
これらのコントローラは、ネットワーク全体の論理的に集中したビューを維持するために同期されなければならない。
分散SDNコントローラの同期には様々なアプローチがあるが、ほとんどの場合、通信遅延の最適化やロードバランシングといった目標を優先し、両方の側面を同時に扱うことを無視する傾向にある。
この制限は、Augmented and Virtual Reality (AR/VR)のような、制約付きネットワークレイテンシとかなりの計算リソースを必要とするアプリケーションを考えると、特に重要になる。
さらに、この分野における多くの既存の研究は、主に値に基づく強化学習(RL)法に依存しており、最先端のポリシーベースのRLアルゴリズムがもたらす潜在的な利点を見越している。
このギャップを埋めるために、当社の作業は、価値ベースの手法とポリシーベースの手法の両方を含む深層強化学習(DRL)技術を調べ、SDN環境でのAR/VRタスクのオフロードにおいて、高いレイテンシ閾値を保証するとともに、最もコスト効率のよいAR/VRタスクのオフロードサーバを選択することに焦点を当てています。
評価結果は,レイテンシやロードバランシングといった個々のネットワークメトリクスを最適化する上で,値ベースの手法が優れているのに対して,ポリシベースのアプローチは,突然のネットワーク変更や再構成に適応する上で,ロバスト性が高いことを示している。
関連論文リスト
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR [30.146175299047325]
産業用インターネット・オブ・モノのユーザ機器(IIoT UE)を意図的(QoS要求品質)とランダムなトラフィック到着で支援する問題について検討する。
利用可能な通信資源のスケジューリング方法を学ぶために,DRLに基づく時間周波数リソースの集中型動的スケジューラを提案する。
論文 参考訳(メタデータ) (2024-03-27T08:57:15Z) - How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
本稿では,DRLの収束性を高めるため,新しい予測支援型DRL手法とそのO-RAN実運用ワークフローを提案する。
提案手法では, 平均初期報酬値, 収束率, 収束シナリオ数において最大22.8%, 86.3%, 300%の改善が見られた。
論文 参考訳(メタデータ) (2023-09-01T14:30:04Z) - A State-Augmented Approach for Learning Optimal Resource Management
Decisions in Wireless Networks [58.720142291102135]
マルチユーザ無線ネットワークにおける無線リソース管理(RRM)問題について考察する。
目標は、ユーザのエルゴード平均パフォーマンスに制約を受けるネットワーク全体のユーティリティ機能を最適化することである。
本稿では, RRM の制約に対応する2変数の集合を入力として, 瞬時ネットワーク状態と並行して, RRM のパラメータ化を提案する。
論文 参考訳(メタデータ) (2022-10-28T21:24:13Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
本稿では,無線ネットワークにおける資源管理問題を解決するためのステート拡張アルゴリズムを提案する。
提案アルゴリズムは, RRM決定を可能, ほぼ最適に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-05T18:02:54Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - RL-QN: A Reinforcement Learning Framework for Optimal Control of
Queueing Systems [8.611328447624677]
モデルベース強化学習(RL)を用いて、待ち行列ネットワークの最適制御ポリシーを学習する。
しかし、従来のRLのアプローチでは、ネットワーク制御問題の非有界状態空間は扱えない。
我々は、状態空間の有限部分集合にモデルベースのRL法を適用するReinforcement Learning for Queueing Networks (RL-QN)と呼ばれる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-14T22:12:27Z) - Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks [22.06811314358283]
IoT(Internet of Things)に使用される無線ネットワークには、主にクラウドベースのコンピューティングと処理が関与することが期待されている。
クラウド環境では、プロセスのパフォーマンスを維持しながらエネルギーを節約するために、動的計算資源割り当てが不可欠である。
本稿では、この動的計算資源割当問題をマルコフ決定プロセス(MDP)にモデル化し、CPU使用量の動的リソース割当を最適化するためのモデルベース強化学習エージェントを設計する。
その結果, エージェントは最適方針に迅速に収束し, 異なる設定で安定して動作し, 性能が良く, あるいは少なくとも等しく動作し, 異なるシナリオでの省エネにおけるベースラインアルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-10-10T15:16:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。