Faster Projected GAN: Towards Faster Few-Shot Image Generation
- URL: http://arxiv.org/abs/2403.08778v1
- Date: Tue, 23 Jan 2024 07:55:27 GMT
- Title: Faster Projected GAN: Towards Faster Few-Shot Image Generation
- Authors: Chuang Wang, Zhengping Li, Yuwen Hao, Lijun Wang, Xiaoxue Li,
- Abstract summary: This paper proposes an improved GAN network model, which is named Faster Projected GAN, based on Projected GAN.
By introducing depth separable convolution (DSC), the number of parameters of the Projected GAN is reduced, the training speed is accelerated, and memory is saved.
- Score: 10.068622488926172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to solve the problems of long training time, large consumption of computing resources and huge parameter amount of GAN network in image generation, this paper proposes an improved GAN network model, which is named Faster Projected GAN, based on Projected GAN. The proposed network is mainly focuses on the improvement of generator of Projected GAN. By introducing depth separable convolution (DSC), the number of parameters of the Projected GAN is reduced, the training speed is accelerated, and memory is saved. Experimental results show that on ffhq-1k, art-painting, Landscape and other few-shot image datasets, a 20% speed increase and a 15% memory saving are achieved. At the same time, FID loss is less or no loss, and the amount of model parameters is better controlled. At the same time, significant training speed improvement has been achieved in the small sample image generation task of special scenes such as earthquake scenes with few public datasets.
Related papers
- E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
We introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient?
First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch.
Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model.
Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time.
arXiv Detail & Related papers (2024-01-11T18:59:14Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Stylized Projected GAN: A Novel Architecture for Fast and Realistic
Image Generation [8.796424252434875]
Projected GANs tackle the training difficulty of GANs by using transfer learning to project the generated and real samples into a pre-trained feature space.
integrated modules are incorporated within the generator architecture of the Fast GAN to mitigate the problem of artifacts in the generated images.
arXiv Detail & Related papers (2023-07-30T17:05:22Z) - A Simple and Effective Baseline for Attentional Generative Adversarial
Networks [8.63558211869045]
A text-to-image model of high-quality images by guiding the generative model through the Text description is an innovative and challenging task.
In recent years, AttnGAN based on the Attention mechanism to guide GAN training has been proposed, SD-GAN, and Stack-GAN++.
We use the popular simple and effective idea (1) to remove redundancy structure and improve the backbone network of AttnGAN.
Our improvements have significantly improved the model size and training efficiency while ensuring that the model's performance is unchanged.
arXiv Detail & Related papers (2023-06-26T13:55:57Z) - Wavelet Diffusion Models are fast and scalable Image Generators [3.222802562733787]
Diffusion models are a powerful solution for high-fidelity image generation, which exceeds GANs in quality in many circumstances.
Recent DiffusionGAN method significantly decreases the models' running time by reducing the number of sampling steps from thousands to several, but their speeds still largely lag behind the GAN counterparts.
This paper aims to reduce the speed gap by proposing a novel wavelet-based diffusion scheme.
We extract low-and-high frequency components from both image and feature levels via wavelet decomposition and adaptively handle these components for faster processing while maintaining good generation quality.
arXiv Detail & Related papers (2022-11-29T12:25:25Z) - FMD-cGAN: Fast Motion Deblurring using Conditional Generative
Adversarial Networks [26.878173373199786]
We present a Fast Motion Deblurring-Conditional Generative Adversarial Network (FMD-cGAN) that helps in blind motion deblurring of a single image.
FMD-cGAN delivers impressive structural similarity and visual appearance after deblurring an image.
arXiv Detail & Related papers (2021-11-30T14:30:44Z) - Projected GANs Converge Faster [50.23237734403834]
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train.
We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space.
Our Projected GAN improves image quality, sample efficiency, and convergence speed.
arXiv Detail & Related papers (2021-11-01T15:11:01Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - Improving the Speed and Quality of GAN by Adversarial Training [87.70013107142142]
We develop FastGAN to improve the speed and quality of GAN training based on the adversarial training technique.
Our training algorithm brings ImageNet training to the broader public by requiring 2-4 GPUs.
arXiv Detail & Related papers (2020-08-07T20:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.