Striving for Faster and Better: A One-Layer Architecture with Auto Re-parameterization for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2502.19867v1
- Date: Thu, 27 Feb 2025 08:20:03 GMT
- Title: Striving for Faster and Better: A One-Layer Architecture with Auto Re-parameterization for Low-Light Image Enhancement
- Authors: Nan An, Long Ma, Guangchao Han, Xin Fan, RIsheng Liu,
- Abstract summary: We aim to delve into the limits of image enhancers both from visual quality and computational efficiency.<n>By rethinking the task demands, we build an explicit connection, i.e., visual quality and computational efficiency are corresponding to model learning and structure design.<n>Ultimately, this achieves efficient low-light image enhancement using only a single convolutional layer, while maintaining excellent visual quality.
- Score: 50.93686436282772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based low-light image enhancers have made significant progress in recent years, with a trend towards achieving satisfactory visual quality while gradually reducing the number of parameters and improving computational efficiency. In this work, we aim to delving into the limits of image enhancers both from visual quality and computational efficiency, while striving for both better performance and faster processing. To be concrete, by rethinking the task demands, we build an explicit connection, i.e., visual quality and computational efficiency are corresponding to model learning and structure design, respectively. Around this connection, we enlarge parameter space by introducing the re-parameterization for ample model learning of a pre-defined minimalist network (e.g., just one layer), to avoid falling into a local solution. To strengthen the structural representation, we define a hierarchical search scheme for discovering a task-oriented re-parameterized structure, which also provides powerful support for efficiency. Ultimately, this achieves efficient low-light image enhancement using only a single convolutional layer, while maintaining excellent visual quality. Experimental results show our sensible superiority both in quality and efficiency against recently-proposed methods. Especially, our running time on various platforms (e.g., CPU, GPU, NPU, DSP) consistently moves beyond the existing fastest scheme. The source code will be released at https://github.com/vis-opt-group/AR-LLIE.
Related papers
- Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
This paper focuses on compressing decoder-only transformer-based autoregressive models through structural weight pruning.<n>Specifically, we propose a training-free pruning method that calculates a numerical score with Newton's method for the Attention and modules, respectively.<n>To verify the effectiveness of our method, we provide both theoretical support and extensive experiments.
arXiv Detail & Related papers (2024-12-17T01:09:23Z) - HASN: Hybrid Attention Separable Network for Efficient Image Super-resolution [5.110892180215454]
lightweight methods for single image super-resolution achieved impressive performance due to limited hardware resources.
We find that using residual connections after each block increases the model's storage and computational cost.
We use depthwise separable convolutions, fully connected layers, and activation functions as the basic feature extraction modules.
arXiv Detail & Related papers (2024-10-13T14:00:21Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
We consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution.
We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms.
As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method.
arXiv Detail & Related papers (2022-12-22T09:05:07Z) - Controllable Image Enhancement [66.18525728881711]
We present a semiautomatic image enhancement algorithm that can generate high-quality images with multiple styles by controlling a few parameters.
An encoder-decoder framework encodes the retouching skills into latent codes and decodes them into the parameters of image signal processing functions.
arXiv Detail & Related papers (2022-06-16T23:54:53Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
In this work, we propose a novel Residual Local Feature Network (RLFN)
The main idea is using three convolutional layers for residual local feature learning to simplify feature aggregation.
In addition, we won the first place in the runtime track of the NTIRE 2022 efficient super-resolution challenge.
arXiv Detail & Related papers (2022-05-16T08:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.