論文の概要: Image-Text Out-Of-Context Detection Using Synthetic Multimodal Misinformation
- arxiv url: http://arxiv.org/abs/2403.08783v1
- Date: Mon, 29 Jan 2024 11:55:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 05:40:54.659574
- Title: Image-Text Out-Of-Context Detection Using Synthetic Multimodal Misinformation
- Title(参考訳): 合成マルチモーダル誤報を用いた画像テキストアウトオブオフコンテキスト検出
- Authors: Fatma Shalabi, Huy H. Nguyen, Hichem Felouat, Ching-Chun Chang, Isao Echizen,
- Abstract要約: 我々は,合成データ生成を用いたOOCD(Out-Of-Context Detection)の新たな手法について検討した。
我々はOOCD用に特別に設計されたデータセットを作成し、正確な分類のための効率的な検出器を開発した。
- 参考スコア(独自算出の注目度): 7.776923607006086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Misinformation has become a major challenge in the era of increasing digital information, requiring the development of effective detection methods. We have investigated a novel approach to Out-Of-Context detection (OOCD) that uses synthetic data generation. We created a dataset specifically designed for OOCD and developed an efficient detector for accurate classification. Our experimental findings validate the use of synthetic data generation and demonstrate its efficacy in addressing the data limitations associated with OOCD. The dataset and detector should serve as valuable resources for future research and the development of robust misinformation detection systems.
- Abstract(参考訳): 誤報はデジタル情報の増大の時代において大きな課題となり、効果的な検出方法の開発が求められている。
我々は,合成データ生成を用いたOOCD(Out-Of-Context Detection)の新たな手法について検討した。
我々はOOCD用に特別に設計されたデータセットを作成し、正確な分類のための効率的な検出器を開発した。
実験により, OOCDに関連するデータ制限に対処する上で, 合成データ生成の有効性を検証した。
データセットと検出器は、将来の研究と堅牢な誤情報検出システムの開発のための貴重な資源として役立てるべきである。
関連論文リスト
- Introducing a Comprehensive, Continuous, and Collaborative Survey of Intrusion Detection Datasets [2.7082111912355877]
COMIDDSは、侵入検出データセットを前例のないレベルで包括的に調査する試みである。
実際のデータサンプルや関連する出版物へのリンクを含む、各データセットに関する構造化されたクリティカルな情報を提供する。
論文 参考訳(メタデータ) (2024-08-05T14:40:41Z) - Deep Learning for Network Anomaly Detection under Data Contamination: Evaluating Robustness and Mitigating Performance Degradation [0.0]
ディープラーニング(DL)は、サイバーセキュリティのためのネットワーク異常検出(NAD)において重要なツールとして登場した。
異常検出のためのDLモデルはデータから特徴や学習パターンを抽出するのに優れているが、データ汚染には弱い。
本研究では,データ汚染に対する6つの教師なしDLアルゴリズムのロバスト性を評価する。
論文 参考訳(メタデータ) (2024-07-11T19:47:37Z) - Privacy-Preserving Statistical Data Generation: Application to Sepsis Detection [13.445454471355214]
分類問題に適用可能な合成データ生成のための統計的アプローチを提案する。
Kernel density Estimator と K-Nearest Neighbors sample (KDE-KNN) によって生成された合成データの実用性とプライバシーへの影響を実世界の文脈で評価する。
論文 参考訳(メタデータ) (2024-04-25T14:26:53Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - Interpretable Out-Of-Distribution Detection Using Pattern Identification [0.0]
データベースプログラムのアウト・オブ・ディストリビューション(OoD)検出は最重要課題である。
文献における一般的なアプローチは、イン・オブ・ディストリビューション(in-distriion、IoD)とOoDバリデーション・サンプルを必要とする検出器を訓練する傾向がある。
我々は、より解釈可能で堅牢なOoD検出器を構築するために、説明可能なAI、すなわちPartialulパターン識別アルゴリズムから既存の研究を活用することを提案する。
論文 参考訳(メタデータ) (2023-01-24T15:35:54Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。