A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance
- URL: http://arxiv.org/abs/2403.08808v1
- Date: Tue, 6 Feb 2024 13:20:56 GMT
- Title: A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance
- Authors: Songnan Yang, Xiaohui Zhang, Shiliang Zhang, Xuehui Ma, Wenqi Bai, Yushuai Li, Tingwen Huang,
- Abstract summary: Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
- Score: 59.21686775951903
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Various animals exhibit accurate navigation using environment cues. The Earth's magnetic field has been proved a reliable information source in long-distance fauna migration. Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation. The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps. Particularly, we construct and train a Temporal Attention-based Long Short-Term Memory (TA-LSTM) network to predict the heading angle during the navigation. To mitigate the impact of geomagnetic anomalies, we develop the mechanism to detect and quantify the anomalies based on Maximum Likelihood Estimation. We integrate the developed mechanism with the TA-LSTM, and calibrate the predicted heading angles to gain resistance against geomagnetic anomalies. Using the retrieved data from the WMM model, we conduct numerical simulations with diversified navigation conditions to test our approach. The simulation results demonstrate a resilience navigation against geomagnetic anomalies by our approach, along with precision and stability of the underwater navigation in single and multiple destination missions.
Related papers
- Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning [62.186340267690824]
Existing studies on geomagnetic navigation rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas.
This paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation.
The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches.
arXiv Detail & Related papers (2024-10-21T09:57:42Z) - Random forests for detecting weak signals and extracting physical
information: a case study of magnetic navigation [0.0]
Two machine-learning architectures, reservoir computing and time-delayed feed-forward neural networks, can be exploited for detecting the Earth's anomaly magnetic field in a GPS-denied environment.
We exploit the machine-learning model of random forests that combines the output of multiple decision trees to give optimal values of the physical quantities of interest.
We show that the random-forest algorithm performs remarkably well in detecting the weak anomaly field and in filtering the position of the aircraft.
arXiv Detail & Related papers (2024-02-21T21:10:12Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Physics-Informed Calibration of Aeromagnetic Compensation in Magnetic
Navigation Systems using Liquid Time-Constant Networks [0.09514898210006967]
Magnetic navigation (MagNav) is a rising alternative to the Global Positioning System (GPS) and has proven useful for aircraft navigation.
Traditional aircraft navigation systems face limitations in precision and reliability in certain environments and against attacks.
We introduce a physics-informed, machine learning approach for extracting clean, reliable, and accurate magnetic signals for MagNav positional estimation.
arXiv Detail & Related papers (2024-01-17T22:46:51Z) - Data-Driven Meets Navigation: Concepts, Models, and Experimental
Validation [0.0]
The purpose of navigation is to determine the position, velocity, and orientation of manned and autonomous platforms, humans, and animals.
We review multidisciplinary, data-driven based navigation algorithms developed and experimentally proven at the Autonomous Navigation and Sensor Fusion Lab.
arXiv Detail & Related papers (2022-10-06T14:03:10Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Position fixing with cold atom gravity gradiometers [56.45088569868981]
We propose a position fixing method for autonomous navigation using partial gravity gradient solutions from cold atom interferometers.
Using standard open source global gravity databases, we show stable navigation solutions for trajectories of over 1000km.
arXiv Detail & Related papers (2022-04-11T16:42:32Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.