Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2410.15837v1
- Date: Mon, 21 Oct 2024 09:57:42 GMT
- Title: Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning
- Authors: Wenqi Bai, Xiaohui Zhang, Shiliang Zhang, Songnan Yang, Yushuai Li, Tingwen Huang,
- Abstract summary: Existing studies on geomagnetic navigation rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas.
This paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation.
The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches.
- Score: 62.186340267690824
- License:
- Abstract: Geomagnetic navigation has drawn increasing attention with its capacity in navigating through complex environments and its independence from external navigation services like global navigation satellite systems (GNSS). Existing studies on geomagnetic navigation, i.e., matching navigation and bionic navigation, rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas. To address the issues with geomagnetic navigation in areas where GNSS is unavailable, this paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation. The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches. Particularly, we integrate the geomagnetic gradient-based parallel approach into geomagnetic navigation. This integration mitigates the over-exploration of the learning agent by adjusting the geomagnetic gradient, such that the obtained gradient is aligned towards the destination. We explore the effectiveness of the proposed approach via detailed numerical simulations, where we implement twin delayed deep deterministic policy gradient (TD3) in realizing the proposed approach. The results demonstrate that our approach outperforms existing metaheuristic and bionic navigation methods in long-distance missions under diverse navigation conditions.
Related papers
- MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains [4.941781282578696]
In the Vision-and-Language Navigation (VLN) task, the agent is required to navigate to a destination following a natural language instruction.
While learning-based approaches have been a major solution to the task, they suffer from high training costs and lack of interpretability.
Recently, Large Language Models (LLMs) have emerged as a promising tool for VLN due to their strong generalization capabilities.
arXiv Detail & Related papers (2024-05-17T08:33:27Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.
Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.
This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - TopoNav: Topological Navigation for Efficient Exploration in Sparse Reward Environments [0.6597195879147555]
TopoNav is a novel framework for efficient goal-oriented exploration and navigation in sparse-reward settings.
TopoNav dynamically constructs a topological map of the environment, capturing key locations and pathways.
We evaluate TopoNav both in the simulated and real-world off-road environments using a Clearpath Jackal robot.
arXiv Detail & Related papers (2024-02-06T15:05:25Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - An Autonomous Vision-Based Algorithm for Interplanetary Navigation [0.0]
Vision-based navigation algorithm is built by combining an orbit determination method with an image processing pipeline.
A novel analytical measurement model is developed providing a first-order approximation of the light-aberration and light-time effects.
Algorithm performance is tested on a high-fidelity, Earth--Mars interplanetary transfer.
arXiv Detail & Related papers (2023-09-18T08:54:29Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Deep Learning-based Spacecraft Relative Navigation Methods: A Survey [3.964047152162558]
This survey aims to investigate the current deep learning-based autonomous spacecraft relative navigation methods.
It focuses on concrete orbital applications such as spacecraft rendezvous and landing on small bodies or the Moon.
arXiv Detail & Related papers (2021-08-19T18:54:19Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.