Cyclic Data Parallelism for Efficient Parallelism of Deep Neural Networks
- URL: http://arxiv.org/abs/2403.08837v1
- Date: Wed, 13 Mar 2024 08:39:21 GMT
- Title: Cyclic Data Parallelism for Efficient Parallelism of Deep Neural Networks
- Authors: Louis Fournier, Edouard Oyallon,
- Abstract summary: In existing methods such as Data Parallelism or ZeRO-DP, micro-batches of data are processed in parallel.
We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the micro-batches from simultaneous to sequential.
- Score: 9.88545357507935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large deep learning models requires parallelization techniques to scale. In existing methods such as Data Parallelism or ZeRO-DP, micro-batches of data are processed in parallel, which creates two drawbacks: the total memory required to store the model's activations peaks at the end of the forward pass, and gradients must be simultaneously averaged at the end of the backpropagation step. We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the micro-batches from simultaneous to sequential, with a uniform delay. At the cost of a slight gradient delay, the total memory taken by activations is constant, and the gradient communications are balanced during the training step. With Model Parallelism, our technique reduces the number of GPUs needed, by sharing GPUs across micro-batches. Within the ZeRO-DP framework, our technique allows communication of the model states with point-to-point operations rather than a collective broadcast operation. We illustrate the strength of our approach on the CIFAR-10 and ImageNet datasets.
Related papers
- Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPU memory constraints have become a notable bottleneck in training such sizable models.
This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.
This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
arXiv Detail & Related papers (2024-03-17T13:06:29Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - Does compressing activations help model parallel training? [64.59298055364336]
We present the first empirical study on the effectiveness of compression methods for model parallelism.
We implement and evaluate three common classes of compression algorithms.
We evaluate these methods across more than 160 settings and 8 popular datasets.
arXiv Detail & Related papers (2023-01-06T18:58:09Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
System supports parallel training methods such as data, pipeline, tensor, and sequence parallelism.
arXiv Detail & Related papers (2021-10-28T04:45:55Z) - EventGraD: Event-Triggered Communication in Parallel Machine Learning [1.843443065883726]
EventGraD is an algorithm with event-triggered communication for gradient descent in parallel machine learning.
We show that EventGraD can reduce the communication load by up to 60% while retaining the same level of accuracy.
arXiv Detail & Related papers (2021-03-12T18:28:50Z) - Parallel Training of Deep Networks with Local Updates [84.30918922367442]
Local parallelism is a framework which parallelizes training of individual layers in deep networks by replacing global backpropagation with truncated layer-wise backpropagation.
We show results in both vision and language domains across a diverse set of architectures, and find that local parallelism is particularly effective in the high-compute regime.
arXiv Detail & Related papers (2020-12-07T16:38:45Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
We propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training.
DCT reduces communication by at least $100times$ and $20times$ during DP and MP, respectively.
It improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance.
arXiv Detail & Related papers (2020-10-18T01:44:42Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z) - Restructuring, Pruning, and Adjustment of Deep Models for Parallel
Distributed Inference [15.720414948573753]
We consider the parallel implementation of an already-trained deep model on multiple processing nodes (a.k.a. workers)
We propose RePurpose, a layer-wise model restructuring and pruning technique that guarantees the performance of the overall parallelized model.
We show that, compared to the existing methods, RePurpose significantly improves the efficiency of the distributed inference via parallel implementation.
arXiv Detail & Related papers (2020-08-19T06:44:41Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning.
We frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point method, as well as hybrid methods of both.
Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power.
arXiv Detail & Related papers (2020-02-10T10:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.