論文の概要: AcademiaOS: Automating Grounded Theory Development in Qualitative Research with Large Language Models
- arxiv url: http://arxiv.org/abs/2403.08844v1
- Date: Wed, 13 Mar 2024 15:54:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 00:41:28.790251
- Title: AcademiaOS: Automating Grounded Theory Development in Qualitative Research with Large Language Models
- Title(参考訳): AcademiaOS:大規模言語モデルを用いた質的研究における基礎理論開発を自動化する
- Authors: Thomas Übellacker,
- Abstract要約: AcademiaOSは、大規模言語モデルを用いた質的研究において、基底理論の開発を自動化する最初の試みである。
ユーザスタディは、このシステムが学術コミュニティで受け入れられ、質的研究において人間を増強する可能性を示すことを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AcademiaOS is a first attempt to automate grounded theory development in qualitative research with large language models. Using recent large language models' language understanding, generation, and reasoning capabilities, AcademiaOS codes curated qualitative raw data such as interview transcripts and develops themes and dimensions to further develop a grounded theoretical model, affording novel insights. A user study (n=19) suggests that the system finds acceptance in the academic community and exhibits the potential to augment humans in qualitative research. AcademiaOS has been made open-source for others to build upon and adapt to their use cases.
- Abstract(参考訳): AcademiaOSは、大規模言語モデルを用いた質的研究において、基底理論の開発を自動化する最初の試みである。
最近の大規模言語モデルの言語理解、生成、推論機能を利用して、AcademiaOSのコードでは、インタビューの書き起こしなどの定性的な生データをキュレートし、テーマと次元を発達させ、基礎となる理論モデルをさらに発展させ、新たな洞察を与えている。
ユーザスタディ(n=19)では、このシステムが学術コミュニティで受け入れられ、質的研究において人間を増強する可能性を示すことを示唆している。
AcademiaOSはオープンソースとして公開されている。
関連論文リスト
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
本稿では、ジェネレーティブAIにおける最近の進歩と技術に関する体系的なレビューと分析について述べる。
生成AIがこれまで行った大きな影響は、大きな言語モデルの開発による言語生成である。
論文は、責任あるAIの原則と、これらの生成モデルの持続可能性と成長に必要な倫理的考察から締めくくられる。
論文 参考訳(メタデータ) (2024-05-17T18:03:59Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Formal Aspects of Language Modeling [74.16212987886013]
大規模言語モデルは最も一般的なNLP発明の1つとなっている。
これらのノートは、ETH Z "urich course on large language model" の理論的部分の伴奏である。
論文 参考訳(メタデータ) (2023-11-07T20:21:42Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - On the application of Large Language Models for language teaching and
assessment technology [18.735612275207853]
我々は,AIによる言語教育とアセスメントシステムに大規模言語モデルを導入する可能性を検討する。
より大きな言語モデルは、テキスト生成における以前のモデルよりも改善されていることがわかった。
自動階調と文法的誤り訂正において、よく知られたベンチマークで進捗が確認されたタスクについては、初期の調査では、彼ら自身の大きな言語モデルが最先端の結果を改善していないことが示されている。
論文 参考訳(メタデータ) (2023-07-17T11:12:56Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Algorithmic Ghost in the Research Shell: Large Language Models and
Academic Knowledge Creation in Management Research [0.0]
本稿では,学術知識創造における大規模言語モデルの役割について考察する。
これには、書き込み、編集、レビュー、データセットの作成、キュレーションが含まれる。
論文 参考訳(メタデータ) (2023-03-10T14:25:29Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Estimating the Personality of White-Box Language Models [0.589889361990138]
大規模なテキストコーパスで訓練された大規模言語モデルは、至る所で広範囲のアプリケーションで使用されている。
既存の研究は、これらのモデルが人間の偏見を捉え、捉えていることを示している。
これらのバイアス、特に害を引き起こす可能性のあるバイアスの多くは、十分に調査されている。
しかし、これらのモデルによって受け継がれた人間の性格特性を推測し、変化させる研究は、ほとんど、あるいは存在しない。
論文 参考訳(メタデータ) (2022-04-25T23:53:53Z) - Language Models are not Models of Language [0.0]
トランスファーラーニングにより、言語モデリングタスクでトレーニングされた大規模なディープラーニングニューラルネットワークにより、パフォーマンスが大幅に向上した。
深層学習モデルは言語の理論的モデルではないので、言語モデルという用語は誤解を招く。
論文 参考訳(メタデータ) (2021-12-13T22:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。