論文の概要: SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
- arxiv url: http://arxiv.org/abs/2403.08885v1
- Date: Wed, 13 Mar 2024 18:12:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:46:57.692266
- Title: SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
- Title(参考訳): SLCF-Net: 連続LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
- Authors: Helin Cao, Sven Behnke,
- Abstract要約: SLCF-Netは、LiDARとカメラデータを逐次融合するSemantic Scene Completionタスクの新しいアプローチである。
それは、RGB画像のシーケンスと疎LiDAR測定から、シーンの欠落した幾何学と意味を共同で推定する。
すべてのSSC測定値に優れ、時間的整合性を示す。
- 参考スコア(独自算出の注目度): 18.342569823885864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB images and sparse LiDAR measurements. The images are semantically segmented by a pre-trained 2D U-Net and a dense depth prior is estimated from a depth-conditioned pipeline fueled by Depth Anything. To associate the 2D image features with the 3D scene volume, we introduce Gaussian-decay Depth-prior Projection (GDP). This module projects the 2D features into the 3D volume along the line of sight with a Gaussian-decay function, centered around the depth prior. Volumetric semantics is computed by a 3D U-Net. We propagate the hidden 3D U-Net state using the sensor motion and design a novel loss to ensure temporal consistency. We evaluate our approach on the SemanticKITTI dataset and compare it with leading SSC approaches. The SLCF-Net excels in all SSC metrics and shows great temporal consistency.
- Abstract(参考訳): 本稿では,LiDARとカメラデータを逐次融合するセマンティックシーンコンプリート(SSC)タスクの新たなアプローチであるSLCF-Netを紹介する。
それは、RGB画像のシーケンスと疎LiDAR測定から、シーンの欠落した幾何学と意味を共同で推定する。
画像は、事前訓練された2D U-Netで意味的にセグメンテーションされ、ディープス・アニーシングが燃料とする深度条件のパイプラインから深度事前を推定する。
2次元画像特徴と3次元シーンボリュームを関連付けるため,ガウスデカイDepth-prior Projection(GDP)を紹介した。
このモジュールは2次元の特徴を視線に沿って3次元の体積に投影し、ガウスデカイ関数を前方の深さを中心に配置する。
ボリュームセマンティクスは3D U-Netによって計算される。
センサモーションを用いて隠れた3次元U-Net状態を伝搬し、時間的整合性を確保するために新しい損失を設計する。
我々はSemanticKITTIデータセットに対する我々のアプローチを評価し、主要なSSCアプローチと比較した。
SLCF-NetはすべてのSSCメトリクスを上回り、時間的一貫性を示す。
関連論文リスト
- CVCP-Fusion: On Implicit Depth Estimation for 3D Bounding Box Prediction [2.0375637582248136]
Cross-View Center Point-Fusionは、3Dオブジェクト検出を行う最先端モデルである。
我々のアーキテクチャは、以前に確立されたアルゴリズム、クロスビュートランスフォーマー、CenterPointのアスペクトを利用する。
論文 参考訳(メタデータ) (2024-10-15T02:55:07Z) - NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Detは、NeRFを用いた屋内マルチビュー3次元検出において、表現学習の強化による優れた性能を実現している。
セマンティックエンハンスメント(セマンティックエンハンスメント)、パースペクティブ・アウェア・サンプリング(パースペクティブ・アウェア・サンプリング)、および順序深度監視を含む3つのソリューションを提案する。
結果として得られたアルゴリズムであるNeRF-Det++は、ScanNetV2とAR KITScenesデータセットで魅力的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-22T11:48:06Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
SSC(Monocular 3D Semantic Scene Completion)は、単一の画像から複雑なセマンティックスや幾何学的形状を予測し、3D入力を必要としないため、近年大きな注目を集めている。
我々は,3次元空間に投影された2次元特徴の特徴的曖昧さ,3次元畳み込みのPose Ambiguity,深さの異なる3次元畳み込みにおける不均衡など,現在の最先端手法におけるいくつかの重要な問題を明らかにする。
シーン補完ネットワーク(NDC-Scene)を考案し,2を直接拡張する。
論文 参考訳(メタデータ) (2023-09-26T02:09:52Z) - DevNet: Self-supervised Monocular Depth Learning via Density Volume
Construction [51.96971077984869]
単眼画像からの自己教師付き深度学習は、通常、時間的に隣接する画像フレーム間の2Dピクセル単位の光度関係に依存する。
本研究は, 自己教師型単眼深度学習フレームワークであるDevNetを提案する。
論文 参考訳(メタデータ) (2022-09-14T00:08:44Z) - Semantic Dense Reconstruction with Consistent Scene Segments [33.0310121044956]
RGB-Dシーケンスから高レベルなシーン理解タスクを解くために,RGB-Dシーケンスから高密度なセマンティック3Dシーンを再構築する手法を提案する。
まず、各RGB-Dペアは、カメラ追跡バックボーンに基づいて、一貫して2Dセマンティックマップに分割される。
入力されたRGB-Dシーケンスから未知環境の高密度3Dメッシュモデルを漸進的に生成する。
論文 参考訳(メタデータ) (2021-09-30T03:01:17Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Volumetric Propagation Network: Stereo-LiDAR Fusion for Long-Range Depth
Estimation [81.08111209632501]
長距離深度推定のための幾何認識型ステレオLiDAR融合ネットワークを提案する。
ステレオ画像の対応を統一した3Dボリューム空間で導くためのキューとして、スパースで正確な点群を活用します。
我々のネットワークは,KITTIおよびVirtual-KITTIデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-03-24T03:24:46Z) - S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point
Clouds [0.16799377888527683]
S3CNetはスパース畳み込みに基づくニューラルネットワークで、単一で統一されたLiDARポイントクラウドからセマンティックに完了したシーンを予測する。
提案手法は,Semantic KITTI ベンチマークを用いて,3次元課題における全ての課題に対して優れることを示す。
論文 参考訳(メタデータ) (2020-12-16T20:14:41Z) - Depth Based Semantic Scene Completion with Position Importance Aware
Loss [52.06051681324545]
PALNetはセマンティックシーン補完のための新しいハイブリッドネットワークである。
詳細な深度情報を用いて,多段階から2次元特徴と3次元特徴の両方を抽出する。
オブジェクトのバウンダリやシーンの隅といった重要な詳細を復元することは有益である。
論文 参考訳(メタデータ) (2020-01-29T07:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。