論文の概要: Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images
- arxiv url: http://arxiv.org/abs/2403.08933v1
- Date: Wed, 13 Mar 2024 19:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:37:06.297110
- Title: Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images
- Title(参考訳): 真理を解明する:フェイク画像における人間の視線パターンの探索
- Authors: Giuseppe Cartella, Vittorio Cuculo, Marcella Cornia, Rita Cucchiara,
- Abstract要約: 我々は、人間の意味的知識を活用して、偽画像検出のフレームワークに含まれる可能性を調べる。
予備的な統計的分析により、人間が本物の画像や変化した画像をどのように知覚するかの特徴的なパターンを探索する。
- 参考スコア(独自算出の注目度): 34.02058539403381
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Creating high-quality and realistic images is now possible thanks to the impressive advancements in image generation. A description in natural language of your desired output is all you need to obtain breathtaking results. However, as the use of generative models grows, so do concerns about the propagation of malicious content and misinformation. Consequently, the research community is actively working on the development of novel fake detection techniques, primarily focusing on low-level features and possible fingerprints left by generative models during the image generation process. In a different vein, in our work, we leverage human semantic knowledge to investigate the possibility of being included in frameworks of fake image detection. To achieve this, we collect a novel dataset of partially manipulated images using diffusion models and conduct an eye-tracking experiment to record the eye movements of different observers while viewing real and fake stimuli. A preliminary statistical analysis is conducted to explore the distinctive patterns in how humans perceive genuine and altered images. Statistical findings reveal that, when perceiving counterfeit samples, humans tend to focus on more confined regions of the image, in contrast to the more dispersed observational pattern observed when viewing genuine images. Our dataset is publicly available at: https://github.com/aimagelab/unveiling-the-truth.
- Abstract(参考訳): 高品質でリアルな画像を作ることは、画像生成の目覚ましい進歩のおかげで可能になった。
所望のアウトプットを自然言語で記述することは、呼吸結果を得るのに必要なのはそれだけです。
しかし、生成モデルの利用が増加するにつれて、悪意のあるコンテンツの伝播や誤情報に対する懸念が高まる。
その結果、研究コミュニティは、画像生成プロセス中に生成モデルが残した低レベルの特徴と可能性のある指紋に焦点を当てた、新しい偽検出技術の開発に積極的に取り組んでいる。
我々の研究では、人間の意味的知識を活用して、偽画像検出のフレームワークに含まれる可能性を調べる。
これを実現するために,拡散モデルを用いて部分的に操作された画像の新たなデータセットを収集し,実・偽の刺激を視ながら観察者の眼球運動を記録する眼球追跡実験を行った。
予備的な統計的分析により、人間が本物の画像や変化した画像をどのように知覚するかの特徴的なパターンを探索する。
統計的には、人間が偽造サンプルを知覚する場合、本物の画像を見る際に観察されるより分散した観察パターンとは対照的に、画像のより限られた領域に集中する傾向にある。
私たちのデータセットは、https://github.com/aimagelab/unveiling-the-ruth.comで公開されています。
関連論文リスト
- Knowledge-Guided Prompt Learning for Deepfake Facial Image Detection [54.26588902144298]
ディープフェイク顔画像検出のための知識誘導型プロンプト学習法を提案する。
具体的には、学習可能なプロンプトの最適化を導くための専門家知識として、大規模言語モデルから偽造関連プロンプトを抽出する。
提案手法は最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2025-01-01T02:18:18Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - FakeBench: Probing Explainable Fake Image Detection via Large Multimodal Models [62.66610648697744]
我々は人間の知覚に関する生成的視覚的偽造の分類を導入し、人間の自然言語における偽造記述を収集する。
FakeBenchは、検出、推論、解釈、きめ細かい偽造分析の4つの評価基準でLMMを調べている。
本研究は,偽画像検出領域における透明性へのパラダイムシフトを示す。
論文 参考訳(メタデータ) (2024-04-20T07:28:55Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
生成画像モデルは、現実的な画像を生成するための有望な技術として登場してきた。
ユーザーがAI生成画像のパターンを効果的に識別し理解できるようにするための需要が高まっている。
我々はAI生成画像の異なるパターンを自動的に抽出する対話型可視化システムASAPを開発した。
論文 参考訳(メタデータ) (2024-04-03T18:20:41Z) - Let Real Images be as a Judger, Spotting Fake Images Synthesized with Generative Models [16.900526163168827]
異なる生成モデルにより合成された偽画像のアーティファクトパターンについて検討した。
本稿では,実画像でのみ共有される自然なトレースを,検出器内の新たな予測対象として採用する。
提案手法では,96.1%のmAPがベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-03-25T07:58:58Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Deepfake detection by exploiting surface anomalies: the SurFake approach [29.088218634944116]
本稿では, ディープフェイク生成が, 買収時のシーン全体の特性に与える影響について検討する。
画像に描かれた表面の特性を解析することにより、深度検出のためにCNNを訓練するのに使用できる記述子を得ることができる。
論文 参考訳(メタデータ) (2023-10-31T16:54:14Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - DE-FAKE: Detection and Attribution of Fake Images Generated by
Text-to-Image Diffusion Models [12.310393737912412]
我々は,テキスト・ツー・イメージ拡散モデルにより生成された偽画像の正当性に関する体系的な研究を開拓した。
視覚的モダリティのために、これらのテキスト・画像拡散モデルの偽画像が共通の手がかりを共有していることを示す普遍的検出を提案する。
言語的モダリティについて,テキスト・ツー・イメージ拡散モデルの画像信頼度に及ぼすテキストキャプションの影響を解析する。
論文 参考訳(メタデータ) (2022-10-13T13:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。