Exploring Prompt Engineering Practices in the Enterprise
- URL: http://arxiv.org/abs/2403.08950v1
- Date: Wed, 13 Mar 2024 20:32:32 GMT
- Title: Exploring Prompt Engineering Practices in the Enterprise
- Authors: Michael Desmond, Michelle Brachman,
- Abstract summary: A prompt is a natural language instruction designed to elicit certain behaviour or output from a model.
For complex tasks and tasks with specific requirements, prompt design is not trivial.
We analyze sessions of prompt editing behavior, categorizing the parts of prompts users iterated on and the types of changes they made.
- Score: 3.7882262667445734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interaction with Large Language Models (LLMs) is primarily carried out via prompting. A prompt is a natural language instruction designed to elicit certain behaviour or output from a model. In theory, natural language prompts enable non-experts to interact with and leverage LLMs. However, for complex tasks and tasks with specific requirements, prompt design is not trivial. Creating effective prompts requires skill and knowledge, as well as significant iteration in order to determine model behavior, and guide the model to accomplish a particular goal. We hypothesize that the way in which users iterate on their prompts can provide insight into how they think prompting and models work, as well as the kinds of support needed for more efficient prompt engineering. To better understand prompt engineering practices, we analyzed sessions of prompt editing behavior, categorizing the parts of prompts users iterated on and the types of changes they made. We discuss design implications and future directions based on these prompt engineering practices.
Related papers
- Conversational Prompt Engineering [14.614531952444013]
We propose Conversational Prompt Engineering (CPE), a user-friendly tool that helps users create personalized prompts for their specific tasks.
CPE uses a chat model to briefly interact with users, helping them articulate their output preferences and integrating these into the prompt.
A user study on summarization tasks demonstrates the value of CPE in creating personalized, high-performing prompts.
arXiv Detail & Related papers (2024-08-08T16:18:39Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks.
This approach brings the additional computational burden of model inference and human effort to guide and control the behavior of LLMs.
We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications [11.568575664316143]
This paper provides a structured overview of recent advancements in prompt engineering, categorized by application area.
We provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized.
This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
arXiv Detail & Related papers (2024-02-05T19:49:13Z) - Helping Language Models Learn More: Multi-dimensional Task Prompt for
Few-shot Tuning [36.14688633670085]
We propose MTPrompt, a multi-dimensional task prompt learning method based on task-related object, summary, and task description information.
By automatically building and searching for appropriate prompts, our proposed MTPrompt achieves the best results on few-shot samples setting and five different datasets.
arXiv Detail & Related papers (2023-12-13T10:00:44Z) - Eliciting Human Preferences with Language Models [56.68637202313052]
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts.
We propose to use *LMs themselves* to guide the task specification process.
We study GATE in three domains: email validation, content recommendation, and moral reasoning.
arXiv Detail & Related papers (2023-10-17T21:11:21Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation
with Large Language Models [116.25562358482962]
State-of-the-art neural language models can be used to solve ad-hoc language tasks without the need for supervised training.
PromptIDE allows users to experiment with prompt variations, visualize prompt performance, and iteratively optimize prompts.
arXiv Detail & Related papers (2022-08-16T17:17:53Z) - Instance-aware Prompt Learning for Language Understanding and Generation [49.22899822734549]
We propose an instance-aware prompt learning method that learns a different prompt for each instance.
Our method achieves the state-of-the-art on the SuperGLUE few-shot learning benchmark.
arXiv Detail & Related papers (2022-01-18T17:03:25Z) - OpenPrompt: An Open-source Framework for Prompt-learning [59.17869696803559]
We present OpenPrompt, a unified easy-to-use toolkit to conduct prompt-learning over PLMs.
OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility.
arXiv Detail & Related papers (2021-11-03T03:31:14Z) - Prompt Programming for Large Language Models: Beyond the Few-Shot
Paradigm [0.0]
We discuss methods of prompt programming, emphasizing the usefulness of considering prompts through the lens of natural language.
We introduce the idea of a metaprompt that seeds the model to generate its own natural language prompts for a range of tasks.
arXiv Detail & Related papers (2021-02-15T05:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.