Casimir repulsion with biased semiconductors
- URL: http://arxiv.org/abs/2403.09007v1
- Date: Thu, 14 Mar 2024 00:04:13 GMT
- Title: Casimir repulsion with biased semiconductors
- Authors: Benjamin Spreng, Calum Shelden, Tao Gong, Jeremy N. Munday,
- Abstract summary: We explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces.
Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances.
Our work opens up new possibilities of controlling forces at the nano- and micrometer scale with applications in sensing and actuation in nanotechnology.
- Score: 1.8273673942018027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum and thermal fluctuations are fundamental to a plethora of phenomena within quantum optics, including the Casimir effect that acts between closely separated surfaces typically found in MEMS and NEMS devices. Particularly promising for engineering and harnessing these forces are systems out of thermal equilibrium. Recently, semiconductors with external bias have been proposed to study the nonequilibrium Casimir force. Here, we explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces, and we determine the effects of bias voltage, semiconductor bandgap energy, and separation for experimentally accessible configurations. Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances. For the geometry of two parallel planes, those modes undergo Fabry-P\'erot interference resulting in an oscillatory force behavior as a function of separation. Utilizing the proximity-force approximation, we predict that the repulsive force exerted on a gold sphere is well within the accuracy of typical Casimir force experiments. Our work opens up new possibilities of controlling forces at the nano- and micrometer scale with applications in sensing and actuation in nanotechnology.
Related papers
- Nanoscale Casimir force softening originated from surface electrons [2.9119226964782414]
We show that surface electrons can enhance or suppress nanoscale Casimir force depending on materials and crystal facets.
Our findings highlight the interaction between surface electrons and vacuum fields and provide a recipe for theoretical and experimental investigation of nanoscale fluctuation-type problems.
arXiv Detail & Related papers (2024-03-18T15:00:53Z) - Electrical and thermal control of Fabry-P\'{e}rot cavities mediated by
Casimir forces [6.972472451444424]
We show that Fabry-P'erot(FP) cavities can be actively controlled by the Casimir force.
As a result, we could shift the resonant wavelengthes of the cavities with tens of nanometers at optical distances.
arXiv Detail & Related papers (2023-10-12T08:09:14Z) - Casimir and Casimir-Polder Interactions for Magneto-dielectric
Materials: Surface Scattering Expansion [0.0]
We develop a general multiple scattering expansion (MSE) for computing Casimir forces between magneto-dielectric bodies and Casimir-Polder forces between polarizable particles and magneto-dielectric bodies.
arXiv Detail & Related papers (2023-09-05T10:46:23Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Giant rectification in strongly-interacting driven tilted systems [0.0]
Correlated quantum systems feature a wide range of nontrivial effects emerging from interactions between their constituting particles.
In nonequilibrium scenarios, these manifest in phenomena such as many-body insulating states and anomalous scaling laws of currents of conserved quantities.
We propose a giant rectification scheme based on the asymmetric interplay between strong particle interactions and a tilted potential.
arXiv Detail & Related papers (2022-09-23T16:55:09Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Nonequilibrium Casimir effects of nonreciprocal surface waves [52.12351460454646]
We show that an isotropic dipolar particle in the vicinity of a substrate made of nonreciprocal plasmonic materials can experience a lateral Casimir force and torque.
We connect the existence of the lateral force to the asymmetric dispersion of nonreciprocal surface polaritons and the existence of the lateral torque to the spin-momentum locking of such surface waves.
arXiv Detail & Related papers (2021-06-19T23:10:04Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Repulsive Casimir-Lifshitz pressure in closed cavities [0.0]
We consider the interaction pressure acting on the surface of a sphere enclosed within a magnetodielectric cavity.
We extend the Dzyaloshinskii-Lifshitz-Pitaevskii result for homogeneous slabs.
We present configurations in which both the interaction and the self-energy contribution to the pressure tend to expand the sphere.
arXiv Detail & Related papers (2020-08-05T10:14:57Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.