Nanoscale Casimir force softening originated from surface electrons
- URL: http://arxiv.org/abs/2403.11849v1
- Date: Mon, 18 Mar 2024 15:00:53 GMT
- Title: Nanoscale Casimir force softening originated from surface electrons
- Authors: Hewan Zhang, Kun Ding,
- Abstract summary: We show that surface electrons can enhance or suppress nanoscale Casimir force depending on materials and crystal facets.
Our findings highlight the interaction between surface electrons and vacuum fields and provide a recipe for theoretical and experimental investigation of nanoscale fluctuation-type problems.
- Score: 2.9119226964782414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong coupling between vacuum fields and quantum matter occurs at the nanoscale and broadens the horizon of light-matter interaction. Nanoscale Casimir force, as an exhibition of vacuum fields, inevitably experiences the influence of surface electrons due to their quantum character, which are ignorable in micron Casimir force. Here, we develop a three-dimensional conformal map method to tackle typical experimental configurations with surface electron contributions to Casimir force purposely and delicately included. Based on this method, we reveal that surface electrons can either enhance or suppress the nanoscale Casimir force, depending on materials and crystal facets. The mechanism is demonstrated to be the Casimir force softening, which results from surface electrons effectively altering the distance seen by the Casimir interaction. Our findings not only highlight the interaction between surface electrons and vacuum fields but also provide a recipe for theoretical and experimental investigation of nanoscale fluctuation-type problems.
Related papers
- Casimir repulsion with biased semiconductors [1.8273673942018027]
We explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces.
Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances.
Our work opens up new possibilities of controlling forces at the nano- and micrometer scale with applications in sensing and actuation in nanotechnology.
arXiv Detail & Related papers (2024-03-14T00:04:13Z) - Giant anisotropy and Casimir phenomena: the case of carbon nanotube
metasurfaces [0.0]
The Casimir interaction and torque are related phenomena originating from the exchange of electromagnetic excitations between objects.
It is found that the Casimir interaction is dominated by thermal fluctuations at sub-micron separations, while the torque is primarily determined by quantum mechanical effects.
Our study suggests that nanostructured anisotropic materials can serve as novel platforms to uncover new functionalities in ubiquitous Casimir phenomena.
arXiv Detail & Related papers (2023-11-08T20:07:21Z) - A knob to tune the Casimir-Lifshitz force with gapped metals [0.0]
Gapped metals offer the potential to manipulate the Casimir-Lifshitz interaction.
Off-stoichiometric effects in gapped metals can be used to control the magnitude and, in some cases, even the sign of Casimir-Lifshitz interactions.
arXiv Detail & Related papers (2023-07-30T09:38:49Z) - Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular
Thin Films [62.997667081978825]
Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries.
We experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere.
We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%.
arXiv Detail & Related papers (2023-06-28T13:44:07Z) - Dirac/Weyl-node-induced oscillating Casimir effect [0.0]
The Casimir effect is a quantum phenomenon induced by the zero-point energy of relativistic fields confined in a finite-size system.
We show the typical properties of the Casimir effect for relativistic electron fields in Dirac/Weyl semimetals.
We find an oscillation of the Casimir energy as a function of the thickness of the thin film, which stems from the existence of Dirac/Weyl nodes in momentum space.
arXiv Detail & Related papers (2022-07-28T13:33:54Z) - Nonequilibrium Casimir effects of nonreciprocal surface waves [52.12351460454646]
We show that an isotropic dipolar particle in the vicinity of a substrate made of nonreciprocal plasmonic materials can experience a lateral Casimir force and torque.
We connect the existence of the lateral force to the asymmetric dispersion of nonreciprocal surface polaritons and the existence of the lateral torque to the spin-momentum locking of such surface waves.
arXiv Detail & Related papers (2021-06-19T23:10:04Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.