論文の概要: An AI-Driven Approach to Wind Turbine Bearing Fault Diagnosis from Acoustic Signals
- arxiv url: http://arxiv.org/abs/2403.09030v1
- Date: Thu, 14 Mar 2024 01:46:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:07:16.837891
- Title: An AI-Driven Approach to Wind Turbine Bearing Fault Diagnosis from Acoustic Signals
- Title(参考訳): 音響信号からの風車軸受故障診断へのAIによるアプローチ
- Authors: Zhao Wang, Xiaomeng Li, Na Li, Longlong Shu,
- Abstract要約: 本研究では, 風力タービン発電機の軸受欠陥を音響信号から分類する深層学習モデルを開発した。
畳み込み型LSTMモデルを構築し, 事前定義された5種類の故障の音声データを用いて, トレーニングと検証を行った。
このモデルでは, トレーニングサンプルの精度が優れ, 検証中に優れた一般化能力を示した。
- 参考スコア(独自算出の注目度): 10.64491245858684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study aimed to develop a deep learning model for the classification of bearing faults in wind turbine generators from acoustic signals. A convolutional LSTM model was successfully constructed and trained by using audio data from five predefined fault types for both training and validation. To create the dataset, raw audio signal data was collected and processed in frames to capture time and frequency domain information. The model exhibited outstanding accuracy on training samples and demonstrated excellent generalization ability during validation, indicating its proficiency of generalization capability. On the test samples, the model achieved remarkable classification performance, with an overall accuracy exceeding 99.5%, and a false positive rate of less than 1% for normal status. The findings of this study provide essential support for the diagnosis and maintenance of bearing faults in wind turbine generators, with the potential to enhance the reliability and efficiency of wind power generation.
- Abstract(参考訳): 本研究の目的は,風力タービン発電機の軸受欠陥を音響信号から分類する深層学習モデルを構築することである。
畳み込みLSTMモデルは、トレーニングと検証の両方のために、5つの事前定義された故障タイプからのオーディオデータを用いて、うまく構築され、訓練された。
データセットを作成するために、生音声信号データを収集し、フレームで処理し、時間と周波数領域情報をキャプチャした。
このモデルでは, トレーニングサンプルの精度に優れ, 検証中に優れた一般化能力を示し, 一般化能力の有能性を示した。
テストサンプルでは、全体的な精度は99.5%を超え、偽陽性率は1%以下であった。
本研究は,風力タービン発電機の軸受欠陥の診断と維持に不可欠な支援を提供し,風力発電の信頼性と効率を高める可能性を示した。
関連論文リスト
- Towards Robust Transcription: Exploring Noise Injection Strategies for Training Data Augmentation [55.752737615873464]
本研究では,SNR(Signal-to-Noise Ratio)レベルにおける白色雑音の影響について検討した。
この研究は、様々な音環境における一貫した性能を維持する転写モデルの開発に向けた予備的な研究として、貴重な洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-10-18T02:31:36Z) - Improving Anomalous Sound Detection via Low-Rank Adaptation Fine-Tuning of Pre-Trained Audio Models [45.90037602677841]
本稿では,音声事前学習モデルを利用した頑健なAnomalous Sound Detection (ASD)モデルを提案する。
マシン操作データを用いてこれらのモデルを微調整し、データ拡張戦略としてSpecAugを使用します。
実験では,従来のSOTAモデルと比較して6.48%の大幅な改善が得られた。
論文 参考訳(メタデータ) (2024-09-11T05:19:38Z) - Accelerating Cavity Fault Prediction Using Deep Learning at Jefferson Laboratory [0.4218593777811082]
加速キャビティはジェファーソン研究所の連続電子ビーム加速器施設(CEBAF)の不可欠な部分である。
本研究では,緩やかに発達する空洞断層を予測するための深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-04-24T12:05:20Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Self-Supervised Pretraining Improves Performance and Inference
Efficiency in Multiple Lung Ultrasound Interpretation Tasks [65.23740556896654]
肺超音波検査における複数分類課題に適用可能なニューラルネットワーク特徴抽出器を,自己指導型プレトレーニングで作成できるかどうかを検討した。
3つの肺超音波のタスクを微調整すると、事前訓練されたモデルにより、各テストセットの受信操作曲線(AUC)における平均クロスタスク面積は、それぞれ0.032と0.061に改善された。
論文 参考訳(メタデータ) (2023-09-05T21:36:42Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
ハイブリッド機能と3つの異なるモデルを用いたECG分類の性能向上を示す。
この研究で提案されたRR間隔の特徴に基づくモデルでは、98.98%の精度が達成され、ベースラインモデルよりも改善された。
周波数特性とRR間隔特性を組み合わせた別のモデルが開発され、ノイズ環境下での良好な持続性能で99%の精度で達成された。
論文 参考訳(メタデータ) (2022-06-14T12:14:40Z) - Vibration Fault Diagnosis in Wind Turbines based on Automated Feature
Learning [0.0]
本稿では, 振動監視風車部品の高精度故障診断手法を提案する。
当社のアプローチは,畳み込みニューラルネットワークと孤立林に基づく,フォールトシグネチャの自律的データ駆動学習と健康状態分類を組み合わせたものだ。
論文 参考訳(メタデータ) (2022-01-31T18:08:43Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
この研究は、最先端のロバストモデルがアウト・オブ・ディストリビューションデータに遭遇した場合、敵のロバスト性がどのように変化を保証しているかを批判的に検証する。
本稿では,トレーニングデータのスペクトルカバレッジを改善するために,新たなデータ拡張方式であるFourierMixを提案する。
また,FourierMixの拡張により,様々なOODベンチマークにおいて,より優れたロバスト性保証を実現することが可能となる。
論文 参考訳(メタデータ) (2021-12-01T17:11:22Z) - On the Frequency Bias of Generative Models [61.60834513380388]
我々は、最先端のGANトレーニングにおいて、高周波アーティファクトに対する提案手法を解析した。
既存のアプローチでは、スペクトルアーティファクトを完全に解決できないことが分かっています。
以上の結果から,識別能力の向上に大きな可能性があることが示唆された。
論文 参考訳(メタデータ) (2021-11-03T18:12:11Z) - Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA
data [0.0]
本稿では,畳み込みニューラルネットワーク(CNN),GAN(Generative Adversarial Network),ドメイン適応学習(Domain Adaption Learning)を用いて,インテリジェントな診断フレームワークを構築する可能性について検討する。
本研究は, 正常およびアイシング試料の固有特徴を捉えるために, 並列GANを用いた2段階の訓練について検討する。
3つの風力タービンSCADAデータのモデル検証は、2段階の訓練がモデル性能を効果的に改善できることを示している。
論文 参考訳(メタデータ) (2021-01-20T00:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。