論文の概要: rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours
- arxiv url: http://arxiv.org/abs/2403.09034v2
- Date: Sun, 17 Mar 2024 13:59:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 23:24:38.717851
- Title: rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours
- Title(参考訳): rFaceNet: アイデンティティに特有な顔輪郭を通した生理学的信号抽出のためのエンド・ツー・エンドネットワーク
- Authors: Dali Zhu, Wenli Zhang, Hualin Zeng, Xiaohao Liu, Long Yang, Jiaqi Zheng,
- Abstract要約: リモート光胸腺撮影(r)技術は、ビデオフレームの微妙なピクセル変化から血液体積パルス(BVP)信号を抽出する。
本稿では,顔の輪郭に着目して顔BVP信号の抽出を促進するrFaceNet法を紹介する。
- 参考スコア(独自算出の注目度): 11.050311824021733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote photoplethysmography (rPPG) technique extracts blood volume pulse (BVP) signals from subtle pixel changes in video frames. This study introduces rFaceNet, an advanced rPPG method that enhances the extraction of facial BVP signals with a focus on facial contours. rFaceNet integrates identity-specific facial contour information and eliminates redundant data. It efficiently extracts facial contours from temporally normalized frame inputs through a Temporal Compressor Unit (TCU) and steers the model focus to relevant facial regions by using the Cross-Task Feature Combiner (CTFC). Through elaborate training, the quality and interpretability of facial physiological signals extracted by rFaceNet are greatly improved compared to previous methods. Moreover, our novel approach demonstrates superior performance than SOTA methods in various heart rate estimation benchmarks.
- Abstract(参考訳): リモート光胸腺撮影(rPPG)技術は、ビデオフレームの微妙なピクセル変化から血液体積パルス(BVP)信号を抽出する。
本研究では,顔の輪郭に焦点をあてて顔BVP信号の抽出を促進する高度なrPPG法であるrFaceNetを紹介する。
rFaceNetは、ID固有の顔輪郭情報を統合し、冗長データを排除している。
時間的に正規化されたフレーム入力から時間圧縮ユニット(TCU)を介して顔の輪郭を効率よく抽出し、クロスタスク特徴結合器(CTFC)を用いて、関連する顔領域に焦点をあてる。
精巧なトレーニングを通じて,rFaceNetによって抽出された顔の生理的信号の品質と解釈性は,従来の方法に比べて大幅に向上した。
さらに,本手法は各種心拍推定ベンチマークにおいてSOTA法よりも優れた性能を示す。
関連論文リスト
- Mask Attack Detection Using Vascular-weighted Motion-robust rPPG Signals [21.884783786547782]
R-based face anti-spoofing method は、しばしばビデオシーケンスの不安定な顔アライメントによる性能劣化に悩まされる。
SIFTキーポイントと顔ランドマークの両方を用いて, 顔の鮮明かつ正確に画素レベルで整列するランドマークアンコール顔縫合法を提案する。
Gated Recurrent Unit (GRU) を備えた軽量なEfficientNetは、分類のための空間的特徴と時間的特徴の両方を抽出するように設計されている。
論文 参考訳(メタデータ) (2023-05-25T11:22:17Z) - Benchmarking Joint Face Spoofing and Forgery Detection with Visual and
Physiological Cues [81.15465149555864]
視覚的外観と生理的rcuesを用いた第1回関節スプーフィングおよび検出ベンチマークを作成した。
r周期性判別を強化するために,顔の強信号マップと連続ウェーブレットを入力として変換した2分岐生理ネットワークを設計した。
論文 参考訳(メタデータ) (2022-08-10T15:41:48Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
本研究では, PPG信号に対する空間時間フィルタリングネットワーク (STFNet) と, PPG信号の制約と相互作用のための空間時間インタラクションネットワーク (STINet) からなる顔偽造検出と分類のためのフレームワークを提案する。
フォージェリーメソッドの生成に関する知見を得て,フレームワークの性能を高めるために,イントラソースとイントラソースのブレンディングを提案する。
論文 参考訳(メタデータ) (2022-07-04T04:57:06Z) - Exposing Deepfake with Pixel-wise AR and PPG Correlation from Faint
Signals [3.0034765247774864]
ディープフェイクは、法的証拠と知的財産保護の信頼性に深刻な脅威をもたらす。
既存の画素レベルの検出方法は、偽ビデオの増大するリアリズムに抵抗できない。
フェースビデオに隠された暗信号を通してディープフェイクを露呈する手法を提案する。
論文 参考訳(メタデータ) (2021-10-29T06:05:52Z) - Pro-UIGAN: Progressive Face Hallucination from Occluded Thumbnails [53.080403912727604]
Inpainting Generative Adversarial Network, Pro-UIGANを提案する。
顔の形状を利用して、隠された小さな顔の補充とアップサンプリング(8*)を行う。
Pro-UIGANは、HR面を視覚的に満足させ、下流タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-08-02T02:29:24Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
我々は、機械学習を用いて、赤外線画像から視覚スペクトル面を合成する異種・横断的な顔認識の課題に対処することを目的とする。
我々は、顔画像合成にGAN(Geneversarative Adrial Networks)を使用する能力について検討し、これらの画像の性能を事前学習した畳み込みニューラルネットワーク(CNN)を用いて検討する。
CNNを用いて抽出した特徴を顔認証と検証に応用する。
論文 参考訳(メタデータ) (2020-07-22T10:18:34Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z) - Exploiting Semantics for Face Image Deblurring [121.44928934662063]
本稿では,深層畳み込みニューラルネットワークによる意味的手がかりを利用して,効果的かつ効率的な顔分解アルゴリズムを提案する。
顔のセマンティックラベルを入力先として組み込んで,顔の局所構造を正規化するための適応的構造損失を提案する。
提案手法は、より正確な顔の特徴と細部を持つシャープ画像を復元する。
論文 参考訳(メタデータ) (2020-01-19T13:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。