rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours
- URL: http://arxiv.org/abs/2403.09034v2
- Date: Sun, 17 Mar 2024 13:59:38 GMT
- Title: rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours
- Authors: Dali Zhu, Wenli Zhang, Hualin Zeng, Xiaohao Liu, Long Yang, Jiaqi Zheng,
- Abstract summary: Remote photoplethysmography (r) technique extracts blood volume pulse (BVP) signals from subtle pixel changes in video frames.
This study introduces rFaceNet, an advanced rFaceNet method that enhances the extraction of facial BVP signals with a focus on facial contours.
- Score: 11.050311824021733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote photoplethysmography (rPPG) technique extracts blood volume pulse (BVP) signals from subtle pixel changes in video frames. This study introduces rFaceNet, an advanced rPPG method that enhances the extraction of facial BVP signals with a focus on facial contours. rFaceNet integrates identity-specific facial contour information and eliminates redundant data. It efficiently extracts facial contours from temporally normalized frame inputs through a Temporal Compressor Unit (TCU) and steers the model focus to relevant facial regions by using the Cross-Task Feature Combiner (CTFC). Through elaborate training, the quality and interpretability of facial physiological signals extracted by rFaceNet are greatly improved compared to previous methods. Moreover, our novel approach demonstrates superior performance than SOTA methods in various heart rate estimation benchmarks.
Related papers
- Mask Attack Detection Using Vascular-weighted Motion-robust rPPG Signals [21.884783786547782]
R-based face anti-spoofing methods often suffer from performance degradation due to unstable face alignment in the video sequence.
A landmark-anchored face stitching method is proposed to align the faces robustly and precisely at the pixel-wise level by using both SIFT keypoints and facial landmarks.
A lightweight EfficientNet with a Gated Recurrent Unit (GRU) is designed to extract both spatial and temporal features for classification.
arXiv Detail & Related papers (2023-05-25T11:22:17Z) - Benchmarking Joint Face Spoofing and Forgery Detection with Visual and
Physiological Cues [81.15465149555864]
We establish the first joint face spoofing and detection benchmark using both visual appearance and physiological r cues.
To enhance the r periodicity discrimination, we design a two-branch physiological network using both facial powerful rtemporal signal map and its continuous wavelet transformed counterpart as inputs.
arXiv Detail & Related papers (2022-08-10T15:41:48Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
We propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges.
PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face.
PF-ViT utilizes vanilla Vision Transformers, and its components are pre-trained as Masked Autoencoders on a large facial expression dataset.
arXiv Detail & Related papers (2022-07-22T13:39:06Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - Exposing Deepfake with Pixel-wise AR and PPG Correlation from Faint
Signals [3.0034765247774864]
Deepfake poses a serious threat to the reliability of judicial evidence and intellectual property protection.
Existing pixel-level detection methods are unable to resist the growing realism of fake videos.
We propose a scheme to expose Deepfake through faint signals hidden in face videos.
arXiv Detail & Related papers (2021-10-29T06:05:52Z) - Pro-UIGAN: Progressive Face Hallucination from Occluded Thumbnails [53.080403912727604]
We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN.
It exploits facial geometry priors to replenish and upsample (8*) the occluded and tiny faces.
Pro-UIGAN achieves visually pleasing HR faces, reaching superior performance in downstream tasks.
arXiv Detail & Related papers (2021-08-02T02:29:24Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
We aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images.
We explore the ability to use Geneversarative Adrial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs)
The features extracted using CNNs are applied in face identification and verification.
arXiv Detail & Related papers (2020-07-22T10:18:34Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z) - Exploiting Semantics for Face Image Deblurring [121.44928934662063]
We propose an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks.
We incorporate face semantic labels as input priors and propose an adaptive structural loss to regularize facial local structures.
The proposed method restores sharp images with more accurate facial features and details.
arXiv Detail & Related papers (2020-01-19T13:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.