Towards a theory of model distillation
- URL: http://arxiv.org/abs/2403.09053v2
- Date: Sat, 4 May 2024 19:52:03 GMT
- Title: Towards a theory of model distillation
- Authors: Enric Boix-Adsera,
- Abstract summary: Distillation is the task of replacing a complicated machine learning model with a simpler model that approximates the original.
We show how to efficiently distill neural networks into succinct, explicit decision tree representations.
We prove that distillation can be much cheaper than learning from scratch, and make progress on characterizing its complexity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distillation is the task of replacing a complicated machine learning model with a simpler model that approximates the original [BCNM06,HVD15]. Despite many practical applications, basic questions about the extent to which models can be distilled, and the runtime and amount of data needed to distill, remain largely open. To study these questions, we initiate a general theory of distillation, defining PAC-distillation in an analogous way to PAC-learning [Val84]. As applications of this theory: (1) we propose new algorithms to extract the knowledge stored in the trained weights of neural networks -- we show how to efficiently distill neural networks into succinct, explicit decision tree representations when possible by using the ``linear representation hypothesis''; and (2) we prove that distillation can be much cheaper than learning from scratch, and make progress on characterizing its complexity.
Related papers
- Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification [0.0]
Main goal is to push further the performance of prototype-based soft-labels distillation in terms of classification accuracy.
Experimental studies trace the capability of the method to distill the data, but also the opportunity to act as an augmentation method.
arXiv Detail & Related papers (2024-03-25T19:15:19Z) - Online Distillation for Pseudo-Relevance Feedback [16.523925354318983]
We investigate whether a model for a specific query can be effectively distilled from neural re-ranking results.
We find that a lexical model distilled online can reasonably replicate the re-ranking of a neural model.
More importantly, these models can be used as queries that execute efficiently on indexes.
arXiv Detail & Related papers (2023-06-16T07:26:33Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Knowledge Distillation Performs Partial Variance Reduction [93.6365393721122]
Knowledge distillation is a popular approach for enhancing the performance of ''student'' models.
The underlying mechanics behind knowledge distillation (KD) are still not fully understood.
We show that KD can be interpreted as a novel type of variance reduction mechanism.
arXiv Detail & Related papers (2023-05-27T21:25:55Z) - HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained
Transformers [49.79405257763856]
This paper focuses on task-agnostic distillation.
It produces a compact pre-trained model that can be easily fine-tuned on various tasks with small computational costs and memory footprints.
We propose Homotopic Distillation (HomoDistil), a novel task-agnostic distillation approach equipped with iterative pruning.
arXiv Detail & Related papers (2023-02-19T17:37:24Z) - DETRDistill: A Universal Knowledge Distillation Framework for
DETR-families [11.9748352746424]
Transformer-based detectors (DETRs) have attracted great attention due to their sparse training paradigm and the removal of post-processing operations.
Knowledge distillation (KD) can be employed to compress the huge model by constructing a universal teacher-student learning framework.
arXiv Detail & Related papers (2022-11-17T13:35:11Z) - Referee: Reference-Free Sentence Summarization with Sharper
Controllability through Symbolic Knowledge Distillation [72.70058049274664]
We present Referee, a novel framework for sentence summarization that can be trained reference-free (i.e., requiring no gold summaries for supervision)
Our work is the first to demonstrate that reference-free, controlled sentence summarization is feasible via the conceptual framework of Symbolic Knowledge Distillation.
arXiv Detail & Related papers (2022-10-25T07:07:54Z) - Self-Knowledge Distillation via Dropout [0.7883397954991659]
We propose a simple and effective self-knowledge distillation method using a dropout (SD-Dropout)
Our method does not require any additional trainable modules, does not rely on data, and requires only simple operations.
arXiv Detail & Related papers (2022-08-11T05:08:55Z) - ERNIE-Search: Bridging Cross-Encoder with Dual-Encoder via Self
On-the-fly Distillation for Dense Passage Retrieval [54.54667085792404]
We propose a novel distillation method that significantly advances cross-architecture distillation for dual-encoders.
Our method 1) introduces a self on-the-fly distillation method that can effectively distill late interaction (i.e., ColBERT) to vanilla dual-encoder, and 2) incorporates a cascade distillation process to further improve the performance with a cross-encoder teacher.
arXiv Detail & Related papers (2022-05-18T18:05:13Z) - Towards Understanding Ensemble, Knowledge Distillation and
Self-Distillation in Deep Learning [93.18238573921629]
We study how Ensemble of deep learning models can improve test accuracy, and how the superior performance of ensemble can be distilled into a single model.
We show that ensemble/knowledge distillation in deep learning works very differently from traditional learning theory.
We prove that self-distillation can also be viewed as implicitly combining ensemble and knowledge distillation to improve test accuracy.
arXiv Detail & Related papers (2020-12-17T18:34:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.